Skip to main content
Log in

Sotalol enhances the anticonvulsant action of valproate and diphenylhydantoin in the mouse maximal electroshock model

  • Original article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Background

Sotalol as a drug blocking β-receptors and potassium KCNH2 channels may interact with different substances that affect seizures. Herein, we present interactions between sotalol and four conventional antiepileptic drugs: carbamazepine, valproate, phenytoin and phenobarbital.

Methods

Effects of sotalol and antiepileptics alone on seizures were determined in the electroconvulsive threshold test, while interactions between sotalol and antiepileptic drugs were estimated in the maximal electroshock test in mice. Motor coordination and long-term memory were evaluated, respectively, in the chimney test and passive-avoidance task. Brain concentrations of antiepileptics were determined by fluorescence polarization immunoassay.

Results

Sotalol at doses up to 100 mg/kg did not affect the electroconvulsive threshold.

Applied at doses 60–100 mg/kg, sotalol potentiated the antielectroshock action of valproate, while at doses 80–100 mg/kg that of phenytoin. Sotalol (up to 100 mg/kg) did not affect the action of carbamazepine or phenobarbital in the maximal electroshock. Sotalol alone and in combinations with antiepileptics impaired neither motor performance nor long-term memory in mice. Finally, sotalol did not change brain concentration of valproate and phenytoin, so pharmacokinetic interactions between the drugs are not probable.

Conclusions

As far as obtained data may be extrapolated into clinical conditions, sotalol may be considered as an arrhythmic drug that does not reduce the action of classical antiepileptic drugs and thereby can be used in epileptic patients with cardiac arrhythmias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ponnusamy A, Marques JLB, Reuber M. Comparison of heart rate variability parameters during complex partial seizures and psychogenic nonepileptic seizures. Epilepsia 2012;53(8):1314–21.

    Article  PubMed  Google Scholar 

  2. Massey CA, Sowers LP, Dlouhy BJ, Richerson GB. Mechanisms of sudden unexpected death in epilepsy: the pathway to prevention. Nat Rev Neurol 2014;10(5):271–82.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Little JG, Bealer SL. β Adrenergic blockade prevents cardiac dysfunction following status epilepticus in rats. Epilepsy Res 2012;99(3):233–9.

    Article  CAS  PubMed  Google Scholar 

  4. Nei M, Ho RT, Abou-Khalil BW, Drislane FW, Liporace J, Romeo A, et al. EEG and ECG in sudden unexplained death in epilepsy. Epilepsia 2004;45(4):338–45.

    Article  PubMed  Google Scholar 

  5. Dlouhy BJ, Gehlbach BK, Kreple CJ, Kawasaki H, Oya H, Buzza C, et al. Breathing inhibited when seizures spread to the amygdala and upon amygdala stimulation. J Neurosci 2015;35(28):10281–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Beach TG, Woodhurst WB, MacDonald DB, Jones MW. Reactive microglia in hippocampal sclerosis associated with human temporal lobe epilepsy. Neurosci Lett 1995;191(1–2):27–30.

    Article  CAS  PubMed  Google Scholar 

  7. Eyo UB, Peng J, Swiatkowski P, Mukherjee A, Bispo A, Wu LJ. Neuronal hyperactivity recruits microglial processes via neuronal NMDA receptors and microglial P2Y12 receptors after status epilepticus. J Neurosci 2014;34(32):10528–40.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vinet J, van Weering HRJ, Heinrich A, Kälin RE, Wegner A, Brouwer N, et al. Neuroprotective function for ramified microglia in hippocampal excitotoxicity. J Neuroinflamm 2012;9:27

    Article  CAS  Google Scholar 

  9. Szalay G, Martinecz B, Lenart N, Kornyei Z, Orsolits B, Judak L, et al. Microglia protect against brain injury and their selective elimination dysregulates neuronal network activity after stroke. Nat Commun 2016;7:11499, doi:https://doi.org/10.1038/ncomms11499.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qin L, Wu X, Block ML, Liu Y, Breese GR, Hong J-S, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007;55(5):453–62.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mueller SG, Bateman LM, Laxer KD. Evidence for brainstem network disruption in temporal lobe epilepsy and sudden unexplained death in epilepsy. Neuroimage Clin 2014;5:208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Anderson JL, Sotalol Prystowsky EN. An important new antiarrhythmic. Am Heart J 1999;137(3):388–409.

    Article  CAS  PubMed  Google Scholar 

  13. Patterson E, Lynch JJ, Lucchesi BR. Antiarrhythmic and antifibrillatory actions of the beta adrenergic receptor antagonist, dl-sotalol. J Pharm Exp Ther 1984;230(2):519–26.

    CAS  Google Scholar 

  14. Zamorano-León JJ, Yañez R, Jaime G, Rodriguez-Sierra P, Calatrava-Ledrado L, Alvarez-Granada RR, et al. KCNH2 gene mutation: a potential link between epilepsy and long QT-2 syndrome. J Neurogenet 2012;26(3–4):382–6.

    Article  PubMed  Google Scholar 

  15. Khanna N, Ray A, Alkondon M, Sen P. Effect of beta-adrenoceptor antagonists and some related drugs on maximal electroshock seizures in mice. Indian J Exp Biol 1989;27(2):128–30.

    CAS  PubMed  Google Scholar 

  16. Luchowska E, Luchowski P, Wielosz M, Kleinrok Z, Czuczwar SJ, Urbańska EM. Propranolol and metoprolol enhance the anticonvulsant action of valproate and diazepam against maximal electroshock. Pharmacol Biochem Behav 2002;71(1–2):223–31.

    Article  CAS  PubMed  Google Scholar 

  17. Shafaroodi H, Khosravani E, Fakhrzad A, Moezi L. The interaction between morphine and propranolol in chemical and electrical seizure models of mice. Neurol Res 2016;38(2):166–76.

    Article  PubMed  Google Scholar 

  18. Nakamura T, Oda Y, Takahashi R, Tanaka K, Hase I, Asada A. Propranolol increases the threshold for lidocaine-induced convulsions in awake rats: a direct effect on the brain. Anesth Analg 2008;106(5):1450–5.

    Article  CAS  PubMed  Google Scholar 

  19. Tkatchenko EI, Lossev NA, Kästner I, Seidel J. Influence of beta adrenergic blockers and their combinations with anticholinergic drugs on epileptiform activity in rabbit hippocampus. Biomed Biochim Acta 1987;46(5):429–32.

    CAS  PubMed  Google Scholar 

  20. Amabeoku G, Chandomba R. Strychnine-induced seizures in mice: the role of noradrenaline. Prog Neuropsychopharmacol Biol Psychiatry 1994;18(4):753–63.

    Article  CAS  PubMed  Google Scholar 

  21. Pericic D, Jazvinscak M, Svob D, Mirkovic K. Beta-1 adrenoceptor antagonists potentiate the anticonvulsive effect of swim stress in mice. Pharmacol Biochem Behav 2000;67(3):507–10.

    Article  CAS  PubMed  Google Scholar 

  22. Paul V, Krishnamoorthy MS. The effect of beta-adrenoceptor antagonists alone and in combination with a GABA-elevating agent on isoniazid-induced convulsions in rats. Indian J Physiol Pharmacol 1989;33(3):175–8.

    CAS  PubMed  Google Scholar 

  23. Lints CE, Nyquist-Battie C. A possible role for beta-adrenergic receptors in the expression of audiogenic seizures. Pharmacol Biochem Behav 1985;22(5):711–6.

    Article  CAS  PubMed  Google Scholar 

  24. De Sarro G, Di Paola ED, Ferreri G, De Sarro A, Fischer W. Influence of some beta-adrenoceptor antagonists on the anticonvulsant potency of antiepileptic drugs against audiogenic seizures in DBA/2 mice. Eur J Pharmacol 2002;442(3):205–13.

    Article  PubMed  Google Scholar 

  25. Lathers CM, Stauffer AZ, Tumer N, Kraras CM, Goldman BD. Anticonvulsant and antiarrhythmic actions of the beta blocking agent timolol. Epilepsy Res 1989;4(1):42–54.

    Article  CAS  PubMed  Google Scholar 

  26. Borowicz KK, Banach M. Antiarrhythmic drugs and epilepsy. Pharmacol Rep 2014;66(4):545–51.

    Article  CAS  PubMed  Google Scholar 

  27. Castel-Branco MM, Alves GL, Figueiredo IV, Falcão AC, Caramona MM. The maximal electroshock seizure (MES) model in the preclinical assessment of potential new antiepileptic drug. Methods Find Exp Clin Pharmacol 2009;31(2):101–6.

    Article  CAS  PubMed  Google Scholar 

  28. Borowicz KK, Banach M, Zarczuk R, Łukasik D, Łuszczki JJ, Czuczwar SJ. Acute and chronic treatment with mianserin differentially affects the anticonvulsant activity of conventional antiepileptic drugs in the mouse maximal electroshock model. Psychopharmacology (Berl.) 2007;195(2):167–74.

    Article  CAS  Google Scholar 

  29. Litchfield JT, Wilcoxon F. A simplified method of evaluating dose-effect experiments. J Pharmacol Exp Ther 1949;96:99–113.

    CAS  PubMed  Google Scholar 

  30. Boissier JR, Tardy J, Diverres JC. Une nouvelle methode simple pour explorer l’action tranquilisante: le test de la cheminee. Med Exp (Basel) 1960;3:81–4.

    Article  CAS  Google Scholar 

  31. Lafuente-Lafuente C, Mouly S, Longas-Tejero MA, Bergmann JF. Antiarrhythmics for maintaining sinus rhythm after cardioversion of atrial fibrillation. Cochrane Database Syst Rev 2015;3:CD005049.

    Google Scholar 

  32. Goel R, Goel A, Kumar Y. Influence of carvedilol on anticonvulsant effect of gabapentin. Acta Neurol Belg 2011;111(4):296–305.

    PubMed  Google Scholar 

  33. Chugh Y, Chakrabarti A, Sharma PL. Diazepam-atenolol combination antagonizes aminophylline-induced convulsions and lethality in mice. Eur J Pharmacol 1991;199(1):135–7.

    Article  CAS  PubMed  Google Scholar 

  34. Wada Y, Hirao N, Shiraishi J, Nakamura M, Koshino Y. Pindolol potentiates the effect of fluoxetine on hippocampal seizures in rats. Neurosci Lett 1999;267(1):61–4.

    Article  CAS  PubMed  Google Scholar 

  35. Raju SS, Gopalakrishna HN, Venkatadri N. Effect of propranolol and nifedipine on maximal electroshock-induced seizures in mice: individually and in combination. Pharmacol Res 1998;38(6):449–52.

    Article  CAS  PubMed  Google Scholar 

  36. de Oliveira GG, Borges MA. Propranolol action in chronically unstable generalized epilepsy. Am J Ther 1994;1(1):38–41.

    Article  PubMed  Google Scholar 

  37. Mayer T, Specht U. Propranolol in startle induced epileptic seizures. J Neurol Neurosurg Psychiatry 1995;58(3):382–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Banach M, Piskorska B, Borowicz-Reutt KK. Propafenone enhances the anticonvulsant action of classical antiepileptic drugs in the mouse maximal electroshock model. Pharmacol Rep 2016;68(3):555–60.

    Article  CAS  PubMed  Google Scholar 

  39. Reagan-Shaw S, Nihal M, Ahmad N. Dose translation from animal to human studies revisited. FASEB J 2007;22(3):659–62.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kinga K. Borowicz-Reutt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banach, M., Popławska, M. & Borowicz-Reutt, K.K. Sotalol enhances the anticonvulsant action of valproate and diphenylhydantoin in the mouse maximal electroshock model. Pharmacol. Rep 69, 1173–1177 (2017). https://doi.org/10.1016/j.pharep.2017.05.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2017.05.005

Keywords

Navigation