Contribution of dopaminergic and noradrenergic systems in the antinociceptive effect of α-(phenylalanyl) acetophenone



This study evaluated the antinociceptive action of α-(phenylalanyl) acetophenone (PSAP) in mice.


Evaluated whether the serotonergic, adrenergic and dopaminergic systems are involved in PSAP antinociceptive activity. PSAP was administered intragastrically (ig) 30 min prior to formalin or glutamate test and compared with a standard drug, meloxicam (10 mg/kg, ig).


The treatment with PSAP (10–50 mg/kg) caused inhibition in the neurogenic phase and reduced the paw oedema caused by intraplantar (ipl) injection of formalin. PSAP (1–50 mg/kg) decreased the nociceptive response in the inflammatory phase of the formalin test and in licking behaviour triggered by glutamate at doses of 0.1–50 mg/kg. The antinociceptive effect of PSAP (1 mg/kg) was abolished when the animals were pre-treated with prazosin (α1-adrenergic antagonist receptor, 0.15 mg/kg, intraperitoneally, ip), yohimbine (α2-adrenergic antagonist receptor, 1 mg/kg, ip) and sulpiride (D2/D3 dopamine antagonist, 5 mg/kg, ip). The antinociceptive effect of PSAP (1 mg/kg) was not abolished by WAY100635 (5-HT1A-selective serotoninergic antagonist, 0.7 mg/kg, ip), ketanserin (selective antagonist of serotonergic 5-HT2A/2C, 0.3 mg/kg, ip), ondansetron (5-HT3 selective serotoninergic antagonist, 0.5 mg/kg, ip) or SCH23390 (D1 dopamine receptor antagonist, 0.05 mg/kg, ip) in the glutamate test. No changes in locomotor activity were observed in the animals treated with PSAP and/or antagonists in the open field test.


These results showed the antinociceptive action of PSAP in formalin and glutamate tests and the involvement of the dopaminergic and adrenergic systems in its antinociceptive activity.

This is a preview of subscription content, access via your institution.


  1. [1]

    Rustøen T, Stubhaug A, Eidsmo I, Westheim A, Paul SM, Miaskowski C. Pain and quality of life in hospitalized patients with heart failure. J Pain Symptom Manage 2008;36:497–504.

    Article  Google Scholar 

  2. [2]

    International Association for the Study of Pain (IASP). IASP task force on taxonomy. Classification of chronic pain, vol. 2. Seattle: IASP Press; 1994. p. 209–14

    Google Scholar 

  3. [3]

    Hjornevik T, Jacobsen LM, Qu H, Bjaalie JG, Gjerstad J, Willoch F. Metabolic plasticity in the supraspinal pain modulating circuitry after noxious stimulus-induced spinal cord LTP. Pain 2008;140:456–64.

    Article  Google Scholar 

  4. [4]

    Von Hehn CA, Baron R, Woolf CJ. Deconstructing the neuropathic pain phenotype to reveal neural mechanisms. Neuron 2012;73:638–52.

    Article  Google Scholar 

  5. [5]

    Nogueira CW, Zeni G, Rocha JBT. Organosellenium and organotellurium compounds: pharmacology and toxicology. Chem Rev 2004;104:6255–86.

    CAS  Article  Google Scholar 

  6. [6]

    Brod LMP, Fronza MG, Wilhelm EA, Luchese C, Vargas JP, Lüdtke S, Savegnago L. Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test. Prog Neuropsychopharmacol Biol Psychiatry 2016;65:201–7.

    Article  Google Scholar 

  7. [7]

    Brüning CA, Gai BM, Soares SM, Martini F, Nogueira CW. Serotonergic systems are implicated in antinociceptive effect of m-trifluoromethyldiphenyl diselenide in the mouse glutamate test. Pharmacol Biochem Behav 2014;125:15–20.

    Article  Google Scholar 

  8. [8]

    Donato F, Pavin NF, Goes ATR, Souza LC, Soares LC, Rodrigues OED, Jesse CR, Savegnago L. Antinociceptive and anti-hyperalgesic effects of bis(4-methylbenzoyl) diselenide in mice: evidence for the mechanism of action. Pharm Biol 2015;53:395–403.

    CAS  Article  Google Scholar 

  9. [9]

    Cotgreave IA, Moldéus P, Brattsand R, Hallberg A, Andersson CM, Engman L. α-(Phenylselenenyl) acetophenone derivatives with glutathione peroxidase-like activity: a comparison with ebselen. Biochem Pharmacol 1992;43:793–802.

    CAS  Article  Google Scholar 

  10. [10]

    Gerzson M, Victoria F, Radatz C, Gomes M, Boeira S, Jacob R, Alves D, Jesse C, Savegnago L. In vitro antioxidant activity and in vivo antidepressant-like effect of α-(phenylselanyl) acetophenone in mice. Pharm Biochem Behav 2012;102:21–9.

    CAS  Article  Google Scholar 

  11. [11]

    Victoria FN, Radatz CS, Sachini M, Jacob RG, Perin G, Silva WP, Lenardão EJ. KF/Al2O3 and PEG-400 as a recyclable medium for the selective a-selenation of aldehydes and ketones. Preparation of potential antimicrobial agents. Tetrahedron Lett 2009;50:6761–3.

    CAS  Article  Google Scholar 

  12. [12]

    Hunskaar S, Hole K. The formalin test in mice: dissociation between inflammatory and non-inflammatory pain. Pain 1987;30:103–14.

    CAS  Article  Google Scholar 

  13. [13]

    Aguirre-Bañuelos P, Granados-Soto V. Evidence for the participation of the nitric oxide-cyclic GMP pathway in the antinociceptive action of meloxicam in the formalin test. Eur J Pharmacol 2000;395:9–13.

    Article  Google Scholar 

  14. [14]

    Santos ARS, Calixto JB. Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides 1997;37:381–9.

    Article  Google Scholar 

  15. [15]

    Beirith A, Santos AR, Calixto JB. Mechanisms underlying the nociception and paw oedema caused by injection of glutamate into the mouse paw. Brain Res 2002;924:219–28.

    CAS  Article  Google Scholar 

  16. [16]

    Santos ARS, Gadotti VM, Oliveira GL, Tibola D, Paszcuk AF, Neto A, Spindola HM, Souza MM, Rodrigues ALS, Calixto JB. Mechanisms involved in the antinociception caused by agmatine in mice. Neuropharmacology 2005;48:1021–34.

    CAS  Article  Google Scholar 

  17. [17]

    Walsh RN, Cummins RA. Open-field test critical review. Psychol Bull 1976;83:482–504.

    CAS  Article  Google Scholar 

  18. [18]

    Mendell JR, Sahenk Z. Painful sensory neuropathy. New Engl J Med 2003;348:1243–55.

    Article  Google Scholar 

  19. [19]

    Gonçalves JC, de Oliveira FS, Benedito RB, de Sousa DP, de Almeida RN, de Araujo DA. Antinociceptive activity of (—)-carvone: evidence of association with decreased peripheral nerve excitability. Biol Pharm Bull 2008;31:1017–20.

    Article  Google Scholar 

  20. [20]

    Shibata M, Ohkubo T, Takahashi H, Inoki R. Modified formalin test: characteristic biphasic pain response. Pain 1989;38:347–458.

    CAS  Article  Google Scholar 

  21. [21]

    Miller KE, Hoffman EM, Sutharshan M, Schechter R. Glutamate pharmacology and metabolism in peripheral primary afferents: physiological and pathophysiological mechanisms. Pharmacol Ther 2011;130:283–309.

    CAS  Article  Google Scholar 

  22. [22]

    Casaril AM, Martinez DM, Ricordi VG, Alves D, Lenardão EJ, Schultze E, Collares T, Seixas FK, Savegnago L. Evaluation of the toxicity of α-(phenylselanyl) acetophenone in mice. Regul Toxicol Pharmacol 2015;73:868–74.

    CAS  Article  Google Scholar 

  23. [23]

    Millan MJ. Descending control of pain. Prog Neurobiol 2002;66:355–474.

    CAS  Article  Google Scholar 

  24. [24]

    Jeong HJ, Mitchell VA, Vaughan CW. Role of 5-HT1 receptor subtypes in the modulation of pain and synaptic transmission in rat spinal superficial dorsal horn. Br J Pharmacol 2012;165:1956–65.

    CAS  Article  Google Scholar 

  25. [25]

    Cervantes-Duran C, Pineda-Farias JB, Bravo-Hernandez M, Quinonez-Bastidas GN, Vidal-Cantu GC, Barragan-Iglesias P. Evidence for the participation of peripheral 5-HT(2A), 5-HT(2B), and 5-HT(2C) receptors in formalin-induced secondary mechanical allodynia and hyperalgesia. Neuroscience 2012;232:169–81.

    Article  Google Scholar 

  26. [26]

    Bardin L, Lavarenne J, Eschalier A. Serotonin receptor subtypes involved in the spinal antinociceptive effect of 5-HT in rats. Pain 2000;86:11–8.

    CAS  Article  Google Scholar 

  27. [27]

    Seyrek M, Kahraman S, Deveci MS, Yesilyurt O, Dogrul A. Systemic cannabinoids produce CB1-mediated antinociception by activation of descending serotonergic pathways that act upon spinal 5-HT7 and 5-HT2A receptors. Eur J Pharmacol 2010;649:183–94.

    CAS  Article  Google Scholar 

  28. [28]

    Pertovaara A. Noradrenergic pain modulation. Prog Neurobiol 2006;80:53–83.

    CAS  Article  Google Scholar 

  29. [29]

    Zarrindast MR, Nassiri-Rad S, Pazouki M. Effects of dopaminergic agents on antinociception in formalin test. Gen Pharmacol 1999;32:517–22.

    CAS  Article  Google Scholar 

  30. [30]

    Sheng HY, Qu CL, Huo FQ, Du JQ, Tang JS. D-2-like but not D-1-like dopamine receptors are involved in the ventrolateral orbital cortex-induced antinociception: a GABAergic modulation mechanism. Exp Neurol 2009;215:128–34.

    CAS  Article  Google Scholar 

  31. [31]

    Altier N, Stewart J. Dopamine receptor antagonists in the nucleus accumbens attenuate analgesia induced by ventral tegmental area substance P or morphine and by nucleus accumbens amphetamine. J Pharmacol Exp Ther 1998;285:208–15.

    CAS  PubMed  Google Scholar 

  32. [32]

    Altier N, Stewart J. The role of dopamine in the nucleus accumbens in analgesia. Life Sci 1999;65:2269–87.

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Ethel A. Wilhelm or Lucielli Savegnago.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sousa, F.S.S., Anversa, R.G., Birmann, P.T. et al. Contribution of dopaminergic and noradrenergic systems in the antinociceptive effect of α-(phenylalanyl) acetophenone. Pharmacol. Rep 69, 871–877 (2017).

Download citation


  • Selenium
  • Organoselenium
  • Glutamate
  • Formalin
  • Nociception