Skip to main content
Log in

Low-dose ouabain administration increases Na+,K+-ATPase activity and reduces cardiac force development in rats

  • Original research article
  • Published:
Pharmacological Reports Aims and scope Submit manuscript

Abstract

Background

Ouabain is a digitalis compound that inhibits the Na+,K+-ATPase (NKA) activity inducing increment in cardiac force. However, this effect seems to be dose dependent. At low concentration, ouabain can induce an increase of NKA activity.

Methods

We investigated the effects of ouabain administration (25 μg/kg/day) for 15 days on cardiac contractility and NKA activity. Blood pressure and left ventricular papillary muscle contraction from placebo and ouabain-treated rats for 15 (OUA15) days were evaluated. Isometric force, post-rest potentiation, positive inotropic intervention produced by isoproterenol, and tetanic tension were measured. The activity and protein expression levels of α1 and α2 isoforms of NKA, sodium calcium exchanger (NCX), sarcoplasmic reticulum calcium ATPase (SERCA2a) and phospholamban (PLB) were also measured.

Results

Systolic and diastolic blood pressures increased after treatment with ouabain. However, isometric tension was reduced in the ouabain treated group. Post-rest potentiation, time parameters, inotropic interventions by isoproterenol and tetanic tension did not change. In the ouabain treated group, NKA activity was increased (Oua 406.16 ± 70.6 vs. CT 282.80 ± 80.5) while protein expression of the α1 isoform of NKA was reduced (Oua 0.97 ± 0.06 vs. CT 0.76 ± 0.05). No changes were observed in protein expression of α2 isoform of NKA, NCX, SERCA2a and PLB. Therefore, although 15-day ouabain treatment increases blood pressure (Oua: 116.4 ± 3 vs. CT: 99.9 ± 3), treatment also reduces isometric tension development (Oua: 0.34 ± 0.14 vs. CT: 0.56 ± 0.22).

Conclusion

We suggest that the effects induced by ouabain in the isolated cardiac muscle could be related at least in part, to changes in NKA activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Laredo J, Hamilton BP, Hamlyn JM. Ouabain is secreted by bovine adrenocortical cells. Endocrinology 1994;135:794–7.

    Article  CAS  Google Scholar 

  2. Hamlyn JM, Ringel R, Schaeffer J, Levinson PD, Hamilton BP, Kowarski AA, et al. A circulating inhibitor of (Na++K+)ATPase associated with essential hypertension. Nature 1982;300:650–2.

    Article  CAS  Google Scholar 

  3. Songu-Mize E, Bealer SL, Caldwell RW. Effect of AV3V lesions on development of DOCA-salt hypertension and vascular Na+-pump activity. Hypertension 1982;4:575–80.

    Article  CAS  Google Scholar 

  4. Mathews WR, DuCharme DW, Hamlyn JM, Harris DW, Mandel F, Clark MA, et al. Mass spectral characterization of an endogenous digitalislike factor from human plasma. Hypertension 1991;17:930–5.

    Article  CAS  Google Scholar 

  5. Huang BS, Leenen FH. Sympathoexcitatory and pressor responses to increased brain sodium and ouabain are mediated via brain ANG II. Am J Physiol 1996;270:H275–80.

    CAS  PubMed  Google Scholar 

  6. D’Urso G, Frascarelli S, Balzan S, Zucchi R, Montali U. Production of ouabain-like factor in normal and ischemic rat heart. J Cardiovasc Pharmacol 2004;43:657–62.

    Article  Google Scholar 

  7. Hamlyn JM, Hamilton BP, Manunta P. Endogenous ouabain, sodium balance and blood pressure: a review and a hypothesis. J Hypertens 1996;14:151–67.

    Article  CAS  Google Scholar 

  8. Huang L, Li H, Xie Z. Ouabain-induced hypertrophy in cultured cardiac myocytes is accompanied by changes in expression of several late response genes. J Mol Cell Cardiol 1997;29:429–37.

    Article  CAS  Google Scholar 

  9. Aydemir-Koksoy A, Abramowitz J, Allen JC. Ouabain-induced signaling and vascular smooth muscle cell proliferation. J Biol Chem 2001;276: 46605–11.

    Article  CAS  Google Scholar 

  10. Blaustein MP. Physiological effects of endogenous ouabain: control of intracellular Ca2+ stores and cell responsiveness. Am J Physiol 1993;264: C1367–87.

    Article  CAS  Google Scholar 

  11. Manunta P, Rogowski AC, Hamilton BP, Hamlyn JM. Ouabain-induced hypertension in the rat: relationships among plasma and tissue ouabain and blood pressure. J Hypertens 1994;12:549–60.

    Article  CAS  Google Scholar 

  12. Yuan CM, Manunta P, Hamlyn JM, Chen S, Bohen E, Yeun J, et al. Long-term ouabain administration produces hypertension in rats. Hypertension 1993;22: 178–87.

    Article  CAS  Google Scholar 

  13. Rossoni LV, Salaices M, Miguel M, Briones AM, Barker LA, Vassallo DV, et al. Ouabain-induced hypertension is accompanied by increases in endothelial vasodilator factors. Am J Physiol Heart Circ Physiol 2002;283:H2110–18.

    Article  CAS  Google Scholar 

  14. Blaustein MP, Juhaszova M, Golovina VA. The cellular mechanism of action of cardiotonic steroids: a new hypothesis. Clin Exp Hypertens 1998;20:691–703.

    Article  CAS  Google Scholar 

  15. Blaustein MP. Sodium/calcium exchange and the control of contractility in cardiac muscle and vascular smooth muscle. J Cardiovasc Pharmacol 1988;12(Suppl. 5):S56–68.

    Article  CAS  Google Scholar 

  16. Arnon A, Hamlyn JM, Blaustein MP. Ouabain augments Ca(2+) transients in arterial smooth muscle without raising cytosolic Na(+).Am J Physiol Heart Circ Physiol 2000;279:H679–91.

    Article  CAS  Google Scholar 

  17. Padilha AS, Moreira CM, Meira EF, Siman FD, Stefanon I, Vassallo DV. Chronic ouabain treatment enhances cardiac myosin ATPase activity in rats. Clin Exp Pharmacol Physiol 2008;35:801–6.

    Article  CAS  Google Scholar 

  18. Huang BS, Leenen FH. Brain renin–angiotensin system and ouabain-induced sympathetic hyperactivity and hypertension in Wistar rats. Hypertension 1999;34:107–12.

    Article  CAS  Google Scholar 

  19. Rossoni LV, Xavier FE, Moreira CM, Falcochio D, Amanso AM, Tanoue CU, et al. Ouabain-induced hypertension enhances left ventricular contractility in rats. Life Sci 2006;79:1537–45.

    Article  CAS  Google Scholar 

  20. Gao J, Wymore RS, Wang Y, Gaudette GR, Krukenkamp IB, Cohen IS, et al. Isoform-specific stimulation of cardiac Na/K pumps by nanomolar concentrations of glycosides. J Gen Physiol 2002;119:297–312.

    Article  CAS  Google Scholar 

  21. Padilha AS, Rossoni LV, Xavier FE, Vassallo DV. Ouabain at nanomolar concentration promotes synthesis and release of angiotensin II from the endothelium of the tail vascular bed of spontaneously hypertensive rats. J Cardiovasc Pharmacol 2004;44:372–80.

    Article  CAS  Google Scholar 

  22. Mill JG, Vassallo DV, Leite CM. Mechanisms underlying the genesis of post-rest contractions in cardiac muscle. Braz J Med Biol Res 1992;25:399–408.

    CAS  PubMed  Google Scholar 

  23. Stefanon I, Cade JR, Fernandes AA, Ribeiro Jr RF, Targueta GP, Mill JG, et al. Ventricular performance and Na+-K+ ATPase activity are reduced early and late after myocardial infarction in rats. Braz J Med Biol Res 2009;42:902–11.

    Article  CAS  Google Scholar 

  24. Di Filippo C, Filippelli A, Rinaldi B, Piegari E, Esposito F, Rossi F, et al. Chronic peripheral ouabain treatment affects the brain endothelin system of rats. J Hypertens 2003;21:747–53.

    Article  Google Scholar 

  25. Zhang J, Leenen FH. AT(1) receptor blockers prevent sympathetic hyperactivity and hypertension by chronic ouabain and hypertonic saline. Am J Physiol Heart Circ Physiol 2001;280:H1318–23.

    Article  CAS  Google Scholar 

  26. Marin J, Redondo J. Vascular sodium pump: endothelial modulation and alterations in some pathological processes and aging. Pharmacol Ther 1999;84:249–71.

    Article  CAS  Google Scholar 

  27. Rodriguez-Manas L,Sanchez-Ferrer CF, Pareja A, Casado MA, Arribas S, Salaices M<ET-Al>. J. Neurogenic component of ouabain-evoked contractions is modulated by the endothelium. Hypertension 1994;23:10–7.

    Article  CAS  Google Scholar 

  28. Rossoni LV, Cunha V, Franca A, Vassallo DV. The influence of nanomolar ouabain on vascular pressor responses is modulated by the endothelium. J Cardiovasc Pharmacol 1999;34:887–92.

    Article  CAS  Google Scholar 

  29. Tucci PJ, Spadaro J,Cicogna AC, Bregagnollo EA. Coronary perfusion pressure as a determinant of ventricular performance. Experientia 1980;36:974–5.

    Article  CAS  Google Scholar 

  30. Siman FD, Stefanon I, Vassallo DV, Padilha AS. A low concentration of ouabain (0.18 microg/kg) enhances hypertension in spontaneously hypertensive rats by inhibiting the Na+ pump and activating the renin–angiotensin system. Braz J Med Biol Res 2010;43:767–76.

    Article  CAS  Google Scholar 

  31. Manunta P, Hamilton BP, Hamlyn JM. Structure–activity relationships for the hypertensinogenic activity of ouabain: role of the sugar and lactone ring. Hypertension 2001;37:472–7.

    Article  CAS  Google Scholar 

  32. Ward SC, Hamilton BP, Hamlyn JM. Novel receptors for ouabain: studies in adrenocortical cells and membranes. Hypertension 2002;39:536–42.

    Article  CAS  Google Scholar 

  33. Weisser-Thomas J, Kubo H, Hefner CA, Gaughan JP, McGowan BS, Ross R, et al. The Na+/Ca2+ exchanger/SR Ca2+ ATPase transport capacity regulates the contractility of normal and hypertrophied feline ventricular myocytes. J Card Fail 2005;11:380–7.

    Article  CAS  Google Scholar 

  34. Bolck B, Munch G, Mackenstein P, Hellmich M, Hirsch I, Reuter H, et al. Na+/ Ca2+ exchanger overexpression impairs frequency- and ouabain-dependent cell shortening in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2004;287:H1435–45.

    Article  Google Scholar 

  35. Dostanic-Larson I, Lorenz JN, Van Huysse JW, Neumann JC, Moseley AE, Lingrel JB. Physiological role of the alpha1- and alpha2-isoforms of the Na+-K+-ATPase and biological significance of their cardiac glycoside binding site. Am J Physiol Regul Integr Comp Physiol 2006;290:R524–8.

    Article  CAS  Google Scholar 

  36. Muller-Ehmsen J, Nickel J, Zobel C, Hirsch I, Bolck B, Brixius K, et al. Longer term effects of ouabain on the contractility of rat isolated cardiomyocytes and on the expression of Ca and Na regulating proteins. Basic Res Cardiol 2003;98:90–6.

    Article  CAS  Google Scholar 

  37. El-Armouche A, Jaeckel E, Boheler KR, Boknik P, Hertle B, Neumann J, et al. Ouabain treatment is associated with upregulation of phosphatase inhibitor-1 and Na+/Ca(2+)-exchanger and beta-adrenergic sensitization in rat hearts. Biochem Biophys Res Commun 2004;318:219–26.

    Article  CAS  Google Scholar 

  38. Sagawa T, Sagawa K, Kelly JE, Tsushima RG, Wasserstrom JA. Activation of cardiac ryanodine receptors by cardiac glycosides. Am J Physiol Heart Circ Physiol 2002;282:H1118–26.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo F. Meira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meira, E.F., Siman, F.D.M., de Faria, T.O. et al. Low-dose ouabain administration increases Na+,K+-ATPase activity and reduces cardiac force development in rats. Pharmacol. Rep 67, 253–259 (2015). https://doi.org/10.1016/j.pharep.2014.10.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.pharep.2014.10.005

Keywords

Navigation