Skip to main content

Advertisement

SpringerLink
Go to cart
  • Log in
  1. Home
  2. Neurotherapeutics
  3. Article
Role of microglia in neurotrauma
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Understanding microglial responses in large animal models of traumatic brain injury: an underutilized resource for preclinical and translational research

09 March 2023

Michael R. Grovola, Catherine von Reyn, … D. Kacy Cullen

Temporal patterns of microglial activation in white matter following experimental mild traumatic brain injury: a systematic literature review

19 December 2021

Prashanth S. Velayudhan, Nicole Schwab, … Anne L. Wheeler

Role of innate inflammation in traumatic brain injury

19 January 2021

Sandrine Bourgeois-Tardif, Louis De Beaumont, … Alexander G Weil

The complexity of neuroinflammation consequent to traumatic brain injury: from research evidence to potential treatments

07 December 2018

Maria Cristina Morganti-Kossmann, Bridgette D. Semple, … Jenna M. Ziebell

Inflammation after spinal cord injury: a review of the critical timeline of signaling cues and cellular infiltration

07 December 2021

Daniel J. Hellenbrand, Charles M. Quinn, … Amgad S. Hanna

The origin, fate, and contribution of macrophages to spinal cord injury pathology

30 March 2019

Lindsay M. Milich, Christine B. Ryan & Jae K. Lee

Microglia Receptors in Animal Models of Traumatic Brain Injury

16 December 2018

Daniel Younger, Madhuvika Murugan, … Namas Chandra

Deletion of p38α MAPK in microglia blunts trauma-induced inflammatory responses in mice

10 May 2019

Josh M. Morganti, Danielle S. Goulding & Linda J. Van Eldik

Acute minocycline administration reduces brain injury and improves long-term functional outcomes after delayed hypoxemia following traumatic brain injury

28 January 2022

Marta Celorrio, Kirill Shumilov, … Stuart H. Friess

Download PDF
  • Review Article
  • Published: October 2010

Role of microglia in neurotrauma

  • David J. Loane1 &
  • Kimberly R. Byrnes2 

Neurotherapeutics volume 7, pages 366–377 (2010)Cite this article

  • 2973 Accesses

  • 454 Citations

  • 9 Altmetric

  • Metrics details

Summary

Microglia are the primary mediators of the immune defense system of the CNS and are integral to the subsequent inflammatory response. The role of microglia in the injured CNS is under scrutiny, as research has begun to fully explore how postinjury inflammation contributes to secondary damage and recovery of function. Whether microglia are good or bad is under debate, with strong support for a dual role or differential activation of microglia. Microglia release a number of factors that modulate secondary injury and recovery after injury, including pro- and anti-inflammatory cytokines, chemokines, nitric oxide, prostaglandins, growth factors, and Superoxide species. Here we review experimental work on the complex and varied responses of microglia in terms of both detrimental and beneficial effects. Addressed in addition are the effects of microglial activation in two examples of CNS injury: spinal cord and traumatic brain injury. Microglial activation is integral to the response of CNS tissue to injury. In that light, future research is needed to focus on clarifying the signals and mechanisms by which microglia can be guided to promote optimal functional recovery.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. del Rio-Hortega P. Microglia. In: Penfield W, editor. Cytology & cellular pathology of the nervous system. New York: P.B. Hoeber, 1932: 483–534.

    Google Scholar 

  2. Spranger M, Fontana A. Activation of microglia: a dangerous interlude in immune function in the brain. Neuroscientist 1996;2: 293–299.

    Google Scholar 

  3. Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol 2010;119: 89–105.

    PubMed  Google Scholar 

  4. Weinstein JR, Koemer IP, Möller T. Microglia in ischemic brain injury. Future Neurol 2010;5: 227–246.

    CAS  PubMed  Google Scholar 

  5. Yadav A, Collman RG. CNS inflammation and macrophage/ microglial biology associated with HIV-1 infection. J Neuroimmune Pharmacol 2009;4: 430–447.

    PubMed  Google Scholar 

  6. Jack C, Ruffini F, Bar-Or A, Antel JP. Microglia and multiple sclerosis. J Neurosci Res 2005;81: 363–373.

    CAS  PubMed  Google Scholar 

  7. Moisse K, Strong MJ. Innate immunity in amyotrophic lateral sclerosis. Biochim Biophys Acta 2006;1762: 1083–1093.

    CAS  PubMed  Google Scholar 

  8. Streit WJ, Conde JR, Fendrick SE, Flanary BE, Mariani CL. Role of microglia in the central nervous system’s immune response. Neurol Res 2005;27: 685–691.

    PubMed  Google Scholar 

  9. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308: 1314–1318.

    CAS  PubMed  Google Scholar 

  10. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007;8: 57–69.

    CAS  PubMed  Google Scholar 

  11. Vilhardt F. Microglia: phagocyte and glia cell. Int J Biochem Cell Biol 2005;37: 17–21.

    CAS  PubMed  Google Scholar 

  12. Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8: 752–758.

    CAS  PubMed  Google Scholar 

  13. Liu GJ, Nagarajah R, Banati RB, Bennett MR. Glutamate induces directed chemotaxis of microglia. Eur J Neurosci 2009;29: 1108–1118.

    PubMed  Google Scholar 

  14. Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol 1999;57: 563–581.

    CAS  PubMed  Google Scholar 

  15. Shaked I, Tchoresh D, Gersner R, et al. Protective autoimmunity: interferon-γ enables microglia to remove glutamate without evoking inflammatory mediators. J Neurochem 2005;92: 997–1009.

    CAS  PubMed  Google Scholar 

  16. Stirling DP, Yong VW. Dynamics of the inflammatory response after murine spinal cord injury revealed by flow cytometry. J Neurosci Res 2008;86: 1944–1958.

    CAS  PubMed  Google Scholar 

  17. Lalancette-Hébert M, Gowing G, Simard A, Weng YC, Kriz J. Selective ablation of proliferating microglial cells exacerbates ischemic injury in the brain. J Neurosci 2007;27: 2596–2605.

    PubMed  Google Scholar 

  18. Enose Y, Destache CJ, Mack AL, et al. Proteomic fingerprints distinguish microglia, bone marrow, and spleen macrophage populations. Glia 2005;51: 161–172.

    PubMed  Google Scholar 

  19. Albright AV, González-Scarano F. Microarray analysis of activated mixed glial (microglia) and monocyte-derived macrophage gene expression. J Neuroimmunol 2004;157: 27–38.

    CAS  PubMed  Google Scholar 

  20. Milligan CE, Levitt P, Cunningham TJ. Brain macrophages and microglia respond differently to lesions of the developing and adult visual system. J Comp Neurol 1991;314: 136–146.

    CAS  PubMed  Google Scholar 

  21. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005;76: 77–98.

    CAS  PubMed  Google Scholar 

  22. Gao HM, Hong JS. Why neurodegenerative diseases are progressive: uncontrolled inflammation drives disease progression. Trends Immunol 2008;29: 357–365.

    CAS  PubMed  Google Scholar 

  23. Griffin WS, Sheng JG, Royston MC, et al. Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 1998;8: 65–72.

    CAS  PubMed  Google Scholar 

  24. Dean JM, Wang X, Kaindl AM, et al. Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 2010;24: 776–783.

    CAS  PubMed  Google Scholar 

  25. Pei Z, Pang H, Qian L, et al. MAC1 mediates LPS-induced production of Superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 2007;55: 1362–1373.

    PubMed  Google Scholar 

  26. Pinteaux-Jones F, Sevastou IG, Fry VA, Heales S, Baker D, Pocock JM. Myelin-induced microglial neurotoxicity can be controlled by microglial metabotropic glutamate receptors. J Neurochem 2008;106: 442–454.

    CAS  PubMed  Google Scholar 

  27. Fang KM, Yang CS, Sun SH, Tzeng SF. Microglial phagocytosis attenuated by short-term exposure to exogenous ATP through P2X receptor action. J Neurochem 2009;111: 1225–1237.

    CAS  PubMed  Google Scholar 

  28. Zhang W, Wang T, Pei Z, et al. Aggregated α-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. FASEB J 2005;19: 533–542.

    CAS  PubMed  Google Scholar 

  29. Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance β-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 2002;83: 973–983.

    CAS  PubMed  Google Scholar 

  30. Combs CK, Johnson DE, Karlo JC, Cannady SB, Landreth GE. Inflammatory mechanisms in Alzheimer’s disease: inhibition of β-amyloid-stimulated proinflammatory responses and neurotoxicity by PPARγ agonists. J Neurosci 2000;20: 558–567.

    CAS  PubMed  Google Scholar 

  31. Pais TF, Figueiredo C, Peixoto R, Braz MH, Chatterjee S. Necrotic neurons enhance microglial neurotoxicity through induction of glutaminase by a MyD88-dependent pathway. J Neuroinflammation 2008;5: 43.

    PubMed  Google Scholar 

  32. Knoch ME, Hartnett KA, Hara H, Kandler K, Aizenman E. Microglia induce neurotoxicity via intraneuronal Zn2+ release and a K+ current surge. Glia 2008;56: 89–96.

    PubMed  Google Scholar 

  33. Gao HM, Liu B, Zhang W, Hong JS. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 2003;17: 1954–1956.

    CAS  PubMed  Google Scholar 

  34. Gao HM, Liu B, Hong JS. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 2003;23: 6181–6187.

    CAS  PubMed  Google Scholar 

  35. Wu DC, Teismann P, Tieu K, et al. NADPH oxidase mediates oxidative stress in the l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 2003;100: 6145–6150.

    CAS  PubMed  Google Scholar 

  36. Loane DJ, Stoica BA, Pajoohesh-Ganji A, Byrnes KR, Faden AI. Activation of metabotropic glutamate receptor 5 modulates microglial reactivity and neurotoxicity by inhibiting NADPH oxidase. J Biol Chem 2009;284: 15629–15639.

    CAS  PubMed  Google Scholar 

  37. Qin L, Liu Y, Wang T, et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 2004;279: 1415–1421.

    CAS  PubMed  Google Scholar 

  38. DeLeo FR, Quinn MT. Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J Leukoc Biol 1996;60: 677–691.

    PubMed  Google Scholar 

  39. Pawate S, Shen Q, Fan F, Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferonγ. J Neurosci Res 2004;77: 540–551.

    CAS  PubMed  Google Scholar 

  40. Chung JY, Choi JH, Lee CH, et al. Comparison of ionized calcium-binding adapter molecule 1-immunoreactive microglia in the spinal cord between young adult and aged dogs. Neurochem Res 2010;35: 620–627.

    CAS  PubMed  Google Scholar 

  41. Godbout JP, Chen J, Abraham J, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. FASEB J 2005;19: 1329–1331.

    CAS  PubMed  Google Scholar 

  42. Lynch AM, Loane DJ, Minogue AM, et al. Eicosapentaenoic acid confers neuroprotection in the amyloid-β challenged aged hippocampus. Neurobiol Aging 2007;28: 845–855.

    CAS  PubMed  Google Scholar 

  43. Gelinas DS, McLaurin J. PPAR-α expression inversely correlates with inflammatory cytokines IL-1β and TNF-α in aging rats. Neurochem Res 2005;30: 1369–1375.

    CAS  PubMed  Google Scholar 

  44. Godbout JP, Johnson RW. Interleukin-6 in the aging brain. J Neuroimmunol 2004;147: 141–144.

    CAS  PubMed  Google Scholar 

  45. Murray CA, Lynch MA. Dietary supplementation with vitamin E reverses the age-related deficit in long term potentiation in dentate gyrus. J Biol Chem 1998;273: 12161–12168.

    CAS  PubMed  Google Scholar 

  46. Conde JR, Streit WJ. Microglia in the aging brain. J Neuropathol Exp Neurol 2006;65: 199–203.

    PubMed  Google Scholar 

  47. Baune BT, Ponath G, Rothermundt M, Roesler A, Berger K. Association between cytokines and cerebral MRI changes in the aging brain. J Geriatr Psychiatry Neurol 2009;22: 23–34.

    PubMed  Google Scholar 

  48. Li J, Baud O, Vartanian T, Volpe JJ, Rosenberg PA. Peroxynitrite generated by inducible nitric oxide synthase and NADPH oxidase mediates microglial toxicity to oligodendrocytes. Proc Natl Acad Sci U S A 2005;102: 9936–9941.

    CAS  PubMed  Google Scholar 

  49. Li J, Ramenaden ER, Peng J, Koito H, Volpe JJ, Rosenberg PA. Tumor necrosis factor α mediates lipopolysaccharide-induced microglial toxicity to developing oligodendrocytes when astrocytes are present. J Neurosci 2008;28: 5321–5330.

    CAS  PubMed  Google Scholar 

  50. Block ML, Hong JS. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 2007;35: 1127–1132.

    CAS  PubMed  Google Scholar 

  51. Takahashi K, Rochford CD, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 2005;201: 647–657.

    CAS  PubMed  Google Scholar 

  52. Fraser DA, Pisalyaput K, Tenner AJ. C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem 2010;112: 733–743.

    CAS  PubMed  Google Scholar 

  53. Li L, Lu J, Tay SS, Moochhala SM, He BP. The function of microglia, either neuroprotection or neurotoxicity, is determined by the equilibrium among factors released from activated microglia in vitro. Brain Res 2007;1159: 8–17.

    CAS  PubMed  Google Scholar 

  54. Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG. Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci 2009;29: 13435–13444.

    CAS  PubMed  Google Scholar 

  55. Colton CA. Heterogeneity of microglial activation in the innate immune response in the brain. J Neuroimmune Pharmacol 2009;4: 399–418.

    PubMed  Google Scholar 

  56. Colton CA, Mott RT, Sharpe H, Xu Q, Van Nostrand WE, Vitek MP. Expression profiles for macrophage alternative activation genes in AD and in mouse models of AD. J Neuroinflammation 2006;3: 27.

    PubMed  Google Scholar 

  57. Butovsky O, Talpalar AE, Ben-Yaakov K, Schwartz M. Activation of microglia by aggregated β-amyloid or lipopolysaccharide impairs MHC-II expression and renders them cytotoxic whereas IFN-γ and IL-4 render them protective. Mol Cell Neurosci 2005;29: 381–393.

    CAS  PubMed  Google Scholar 

  58. Lyons A, Griffin RJ, Costelloe CE, Clarke RM, Lynch MA. IL-4 attenuates the neuroinflammation induced by amyloid-β in vivo and in vitro. J Neurochem 2007;101: 771–781.

    CAS  PubMed  Google Scholar 

  59. Aloisi F, De Simone R, Columba-Cabezas S, Levi G. Opposite effects of interferon-γ and prostaglandin E2 on tumor necrosis factor and interleukin-10 production in microglia: a regulatory loop controlling microglia pro- and anti-inflammatory activities. J Neurosci Res 1999;56: 571–580.

    CAS  PubMed  Google Scholar 

  60. Liu JS, Amaral TD, Brosnan CF, Lee SC. IFNs are critical regulators of IL-1 receptor antagonist and IL-1 expression in human microglia. J Immunol 1998;161: 1989–1996.

    CAS  PubMed  Google Scholar 

  61. Kiefer R, Schweitzer T, Jung S, Toyka KV, Haltung HP. Sequential expression of transforming growth factor-β1 by T-cells, macrophages, and microglia in rat spinal cord during autoimmune inflammation. J Neuropathol Exp Neurol 1998;57: 385–395.

    CAS  PubMed  Google Scholar 

  62. Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996;16: 2508–2521.

    CAS  PubMed  Google Scholar 

  63. Allan SM, Tyrrell PJ, Rothwell NJ. Interleukin-1 and neuronal injury. Nat Rev Immunol 2005;5: 629–640.

    CAS  PubMed  Google Scholar 

  64. O’Keefe GM, Nguyen VT, Benveniste EN. Class II transactivator and class II MHC gene expression in microglia: modulation by the cytokines TGF-β, IL-4, IL-13 and IL-10. Eur J Immunol 1999;29: 1275–1285.

    PubMed  Google Scholar 

  65. Frei K, Lins H, Schwerdel C, Fontana A. Antigen presentation in the central nervous system. The inhibitory effect of IL-10 on MHC class II expression and production of cytokines depends on the inducing signals and the type of cell analyzed. J Immunol 1994;152: 2720–2728.

    CAS  PubMed  Google Scholar 

  66. Polazzi E, Altamira LE, Eleuteri S, et al. Neuroprotection of microglial conditioned medium on 6-hydroxydopamine-induced neuronal death: role of transforming growth factor β-2. J Neurochem 2009;110: 545–556.

    CAS  PubMed  Google Scholar 

  67. Lai AY, Todd KG. Differential regulation of trophic and proinflammatory microglial effectors is dependent on severity of neuronal injury. Glia 2008;56: 259–270.

    PubMed  Google Scholar 

  68. Pinteaux E, Rothwell NJ, Boutin H. Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1ra) are mediated by glia. Glia 2006;53: 551–556.

    PubMed  Google Scholar 

  69. Roy A, Liu X, Pahan K. Myelin basic protein-primed T cells induce neurotrophins in glial cells via αvβ3 [corrected] integrin [Erratum in: J Biol Chem 2008;283:3688]. J Biol Chem 2007;282: 32222–32232

    CAS  PubMed  Google Scholar 

  70. Bai B, Song W, Ji Y, et al. Microglia and microglia-like cell differentiated from DC inhibit CD4 T cell proliferation. PLoS One 2009;4: e7869.

    PubMed  Google Scholar 

  71. Neumann J, Sauerzweig S, Rönicke R, et al. Microglia cells protect neurons by direct engulfment of invading neutrophil granulocytes: a new mechanism of CNS immune privilege. J Neurosci 2008;28: 5965–5975.

    CAS  PubMed  Google Scholar 

  72. Bao F, Dekaban GA, Weaver LC. Anti-CD11d antibody treatment reduces free radical formation and cell death in the injured spinal cord of rats. J Neurochem 2005;94: 1361–1373.

    CAS  PubMed  Google Scholar 

  73. Hausmann ON. Post-traumatic inflammation following spinal cord injury. Spinal Cord 2003;41: 369–378.

    CAS  PubMed  Google Scholar 

  74. Fitch MT, Doller C, Combs CK, Landreth GE, Silver J. Cellular and molecular mechanisms of glial scarring and progressive cavitation: in vivo and in vitro analysis of inflammation-induced secondary injury after CNS trauma. J Neurosci 1999;19: 8182–8198.

    CAS  PubMed  Google Scholar 

  75. Dusart I, Schwab ME. Secondary cell death and the inflammatory reaction after dorsal hemisection of the rat spinal cord. Eur J Neurosci 1994;6: 712–724.

    CAS  PubMed  Google Scholar 

  76. Koshinaga M, Whittemore SR. The temporal and spatial activation of microglia in fiber tracts undergoing anterograde and retrograde degeneration following spinal cord lesion. J Neurotrauma 1995;12: 209–222.

    CAS  PubMed  Google Scholar 

  77. Bareyre FM, Schwab ME. Inflammation, degeneration and regeneration in the injured spinal cord: insights from DNA microarrays. Trends Neurosci 2003;26: 555–563.

    CAS  PubMed  Google Scholar 

  78. Popovich PG, Guan Z, McGaughy V, Fisher L, Hickey WF, Basso DM. The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J Neuropathol Exp Neurol 2002;61: 623–633.

    CAS  PubMed  Google Scholar 

  79. Keane RW, Davis AR, Dietrich WD. Inflammatory and apoptotic signaling after spinal cord injury. J Neurotrauma 2006;23: 335–344.

    PubMed  Google Scholar 

  80. Wang X, Arcuino G, Takano T, et al. P2X7 receptor inhibition improves recovery after spinal cord injury. Nat Med 2004;10: 821–827.

    CAS  PubMed  Google Scholar 

  81. Schwab JM, Brechtel K, Nguyen TD, Schluesener HJ. Persistent accumulation of cyclooxygenase-1 (COX-1) expressing microglia/macrophages and upregulation by endothelium following spinal cord injury. J Neuroimmunol 2000;111: 122–130.

    CAS  PubMed  Google Scholar 

  82. Schmitt AB, Buss A, Breuer S, et al. Major histocompatibility complex class II expression by activated microglia caudal to lesions of descending tracts in the human spinal cord is not associated with a T cell response. Acta Neuropathol 2000;100: 528–536.

    CAS  PubMed  Google Scholar 

  83. Popovich PG, van Rooijen N, Hickey WF, Preidis G, McGaughy V. Hematogenous macrophages express CD8 and distribute to regions of lesion cavitation after spinal cord injury. Exp Neurol 2003;182: 275–287.

    CAS  PubMed  Google Scholar 

  84. Bruce-Keller AJ. Microglial-neuronal interactions in synaptic damage and recovery. J Neurosci Res 1999;58: 191–201.

    CAS  PubMed  Google Scholar 

  85. Aggarwal BB, Samanta A, Feldman M. TNF α. In: Oppenheim JJ, Feldman M, editors. Cytokine reference: a compendium of cytokines and other mediators of host defense. San Diego: Academic Press, 2001: 413–434.

    Google Scholar 

  86. Benveniste EN. Inflammatory cytokines within the central nervous system: sources, function, and mechanism of action. Am J Physiol 1992;263: C1-C16.

    CAS  PubMed  Google Scholar 

  87. Bartholdi D, Schwab ME. Expression of pro-inflammatory cytokine and chemokine mRNA upon experimental spinal cord injury in mouse: an in situ hybridization study. Eur J Neurosci 1997;9: 1422–1438.

    CAS  PubMed  Google Scholar 

  88. Hayashi M, Ueyama T, Nemoto K, Tamaki T, Senba E. Sequential mRNA expression for immediate early genes, cytokines, and neurotrophins in spinal cord injury. J Neurotrauma 2000;17: 203–218.

    CAS  PubMed  Google Scholar 

  89. Streit WJ, Semple-Rowland SL, Hurley SD, Miller RC, Popovich PG, Stokes BT. Cytokine mRNA profiles in contused spinal cord and axotomized facial nucleus suggest a beneficial role for inflammation and gliosis. Exp Neurol 1998;152: 74–87.

    CAS  PubMed  Google Scholar 

  90. Li JM, Fan LM, Christie MR, Shah AM. Acute tumor necrosis factor α signaling via NADPH oxidase in microvascular endothelial cells: role of p47phox phosphorylation and binding to TRAF4. Mol Cell Biol 2005;25: 2320–2330.

    CAS  PubMed  Google Scholar 

  91. Zou JY, Crews FT. TNF α potentiates glutamate neurotoxicity by inhibiting glutamate uptake in organotypic brain slice cultures: neuroprotection by NFκB inhibition. Brain Res 2005;1034: 11–24.

    CAS  PubMed  Google Scholar 

  92. Di Giovanni S, Knoblach SM, Brandoli C, Aden SA, Hoffman EP, Faden AI. Gene profiling in spinal cord injury shows role of cell cycle in neuronal death. Ann Neurol 2003;53: 454–468.

    PubMed  Google Scholar 

  93. De Biase A, Knoblach SM, Di Giovanni S, et al. Gene expression profiling of experimental traumatic spinal cord injury as a function of distance from impact site and injury severity. Physiol Genomics 2005;22: 368–381.

    PubMed  Google Scholar 

  94. Aimone JB, Leasure JL, Perreau VM, Thallmair M. Spatial and temporal gene expression profiling of the contused rat spinal cord. Exp Neurol 2004;189: 204–221.

    CAS  PubMed  Google Scholar 

  95. Carmel JB, Galante A, Soteropoulos P, et al. Gene expression profiling of acute spinal cord injury reveals spreading inflammatory signals and neuron loss. Physiol Genomics 2001;7: 201–213.

    CAS  PubMed  Google Scholar 

  96. Byrnes KR, Garay J, Di Giovanni S, et al. Expression of two temporally distinct microglia-related gene clusters after spinal cord injury. Glia 2006;53: 420–433.

    PubMed  Google Scholar 

  97. Zai LJ, Wrathall JR. Cell proliferation and replacement following contusive spinal cord injury. Glia 2005;50: 247–257.

    PubMed  Google Scholar 

  98. Carlson SL, Parrish ME, Springer JE, Doty K, Dossett L. Acute inflammatory response in spinal cord following impact injury. Exp Neurol 1998;151: 77–88.

    CAS  PubMed  Google Scholar 

  99. Popovich PG, Wei P, Stokes BT. Cellular inflammatory response after spinal cord injury in Sprague-Dawley and Lewis rats. J Comp Neurol 1997;377: 443–464.

    CAS  PubMed  Google Scholar 

  100. Beck KD, Nguyen HX, Galvan MD, Salazar DL, Woodruff TM, Anderson AJ. Quantitative analysis of cellular inflammation after traumatic spinal cord injury: evidence for a multiphasic inflammatory response in the acute to chronic environment. Brain 2010;133: 433–447.

    PubMed  Google Scholar 

  101. Aloisi F. Immune function of microglia. Glia 2001;36: 165–179.

    CAS  PubMed  Google Scholar 

  102. Popovich PG, Hickey WF. Bone marrow chimeric rats reveal the unique distribution of resident and recruited macrophages in the contused rat spinal cord. J Neuropathol Exp Neurol 2001;60: 676–685.

    CAS  PubMed  Google Scholar 

  103. Yang L, Jones NR, Blumbergs PC, et al. Severity-dependent expression of pro-inflammatory cytokines in traumatic spinal cord injury in the rat. J Clin Neurosci 2005;12: 276–284.

    CAS  PubMed  Google Scholar 

  104. Popovich PG, Homer PJ, Mullin BB, Stokes BT. A quantitative spatial analysis of the blood-spinal cord barrier: I. Permeability changes after experimental spinal contusion injury. Exp Neurol 1996;142: 258–275.

    CAS  PubMed  Google Scholar 

  105. Shechter R, London A, Varol C, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009;6: el000113.

    Google Scholar 

  106. Vaziri ND, Lee YS, Lin CY, Lin VW, Sindhu RK. NAD(P)H oxidase, Superoxide dismutase, catalase, glutathione peroxidase and nitric oxide synthase expression in subacute spinal cord injury. Brain Res 2004;995: 76–83.

    CAS  PubMed  Google Scholar 

  107. Liu D, Bao F, Rough DS, Dewitt DS. Peroxynitrite generated at the level produced by spinal cord injury induces peroxidation of membrane phospholipids in normal rat cord: reduction by a metalloporphyrin. J Neurotrauma 2005;22: 1123–1133.

    CAS  PubMed  Google Scholar 

  108. Bao F, Liu D. Peroxynitrite generated in the rat spinal cord induces neuron death and neurological deficits. Neuroscience 2002;115: 839–849.

    CAS  PubMed  Google Scholar 

  109. Xu M, Yip GW, Gan LT, Ng YK. Distinct roles of oxidative stress and antioxidants in the nucleus dorsalis and red nucleus following spinal cord hemisection. Brain Res 2005;1055: 137–142.

    CAS  PubMed  Google Scholar 

  110. Wu J, Yoo S, Wilcock D, et al. Interaction of NG2(+) glial progenitors and microglia/macrophages from the injured spinal cord. Glia 2010;58: 410–422.

    PubMed  Google Scholar 

  111. Horn KP, Busch SA, Hawthorne AL, van Rooijen N, Silver J. Another barrier to regeneration in the CNS: activated macrophages induce extensive retraction of dystrophic axons through direct physical interactions. J Neurosci 2008;28: 9330–9341.

    CAS  PubMed  Google Scholar 

  112. Rolls A, Shechter R, London A, et al. Two faces of chondroitin sulfate proteoglycan in spinal cord repair: a role in microglia/macrophage activation. PLoS Med 2008;5: e171.

    PubMed  Google Scholar 

  113. Slepko N, Levi G. Progressive activation of adult microglial cells in vitro. Glia 1996;16: 241–246.

    CAS  PubMed  Google Scholar 

  114. Zhang KH, Xiao HS, Lu PH, et al. Differential gene expression after complete spinal cord transection in adult rats: an analysis focused on a subchronic post-injury stage. Neuroscience 2004;128: 375–388.

    CAS  PubMed  Google Scholar 

  115. Reichert F, Rotshenker S. Deficient activation of microglia during optic nerve degeneration. J Neuroimmunol 1996;70: 153–161.

    CAS  PubMed  Google Scholar 

  116. Povlishock JT, Katz DI. Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 2005;20: 76–94.

    PubMed  Google Scholar 

  117. McIntosh TK, Saatman KE, Raghupathi R, et al. The Dorothy Russell Memorial Lecture. The molecular and cellular sequelae of experimental traumatic brain injury: pathogenetic mechanisms. Neuropathol Appl Neurobiol 1998;24: 251–267.

    CAS  PubMed  Google Scholar 

  118. Streit WJ. The role of microglia in brain injury. Neurotoxicology 1996;17: 671–678.

    CAS  PubMed  Google Scholar 

  119. Giordana MT, Attanasio A, Cavalla P, Migheli A, Vigliani MC, Schiffer D. Reactive cell proliferation and microglia following injury to the rat brain. Neuropathol Appl Neurobiol 1994;20: 163–174.

    CAS  PubMed  Google Scholar 

  120. Haynes SE, Hollopeter G, Yang G, et al. The P2Y12 receptor regulates microglial activation by extracellular nucleotides. Nat Neurosci 2006;9: 1512–1519.

    CAS  PubMed  Google Scholar 

  121. Engel S, Schluesener H, Mittelbronn M, et al. Dynamics of microglial activation after human traumatic brain injury are revealed by delayed expression of macrophage-related proteins MRP8 and MRP14. Acta Neuropathol 2000;100: 313–322.

    CAS  PubMed  Google Scholar 

  122. Beschomer R, Nguyen TD, Gözalan F, et al. CD14 expression by activated parenchymal microglia/macrophages and infiltrating monocytes following human traumatic brain injury. Acta Neuropathol 2002;103: 541–549.

    Google Scholar 

  123. Gentleman SM, Leclercq PD, Moyes L, et al. Long-term intracerebral inflammatory response after traumatic brain injury. Forensic Sci Int 2004;146: 97–104.

    CAS  PubMed  Google Scholar 

  124. Csuka E, Hans VH, Ammann E, Trentz O, Kossmann T, Morganti-Kossmann MC. Cell activation and inflammatory response following traumatic axonal injury in the rat. Neuroreport 2000;11: 2587–2590.

    CAS  PubMed  Google Scholar 

  125. Maeda J, Higuchi M, Inaji M, et al. Phase-dependent roles of reactive microglia and astrocytes in nervous system injury as delineated by imaging of peripheral benzodiazepine receptor. Brain Res 2007;1157: 100–111.

    CAS  PubMed  Google Scholar 

  126. Raghavendra Rao VL, Dogan A, Bowen KK, Dempsey RJ. Traumatic brain injury leads to increased expression of peripheral-type benzodiazepine receptors, neuronal death, and activation of astrocytes and microglia in rat thalamus. Exp Neurol 2000;161: 102–114.

    CAS  PubMed  Google Scholar 

  127. Raghavendra Rao VL, Dhodda VK, Song G, Bowen KK, Dempsey RJ. Traumatic brain injury-induced acute gene expression changes in rat cerebral cortex identified by GeneChip analysis. J Neurosci Res 2003;71: 208–219.

    PubMed  Google Scholar 

  128. Natale JE, Ahmed F, Cernak I, Stoica B, Faden AI. Gene expression profile changes are commonly modulated across models and species after traumatic brain injury. J Neurotrauma 2003;20: 907–927.

    PubMed  Google Scholar 

  129. Kobori N, Clifton GL, Dash P. Altered expression of novel genes in the cerebral cortex following experimental brain injury. Brain Res Mol Brain Res 2002;104: 148–158.

    CAS  PubMed  Google Scholar 

  130. Israelsson C, Bengtsson H, Kylberg A, et al. Distinct cellular patterns of upregulated chemokine expression supporting a prominent inflammatory role in traumatic brain injury. J Neurotrauma 2008;25: 959–974.

    PubMed  Google Scholar 

  131. Lu KT, Wang YW, Yang JT, Yang YL, Chen HI. Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons [Erratum in: J Neurotrauma 2009;26:469]. J Neurotrauma 2005;22: 885–895.

    PubMed  Google Scholar 

  132. Lu KT, Wang YW, Wo YY, Yang YL. Extracellular signal-regulated kinase-mediated IL-1-induced cortical neuron damage during traumatic brain injury. Neurosci Lett 2005;386: 40–45.

    CAS  PubMed  Google Scholar 

  133. Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, Mc-Intosh TK. Experimental brain injury induces expression of interleukin-1β mRNA in the rat brain. Brain Res Mol Brain Res 1995;30: 125–130.

    CAS  PubMed  Google Scholar 

  134. Pinteaux E, Parker LC, Rothwell NJ, Luheshi GN. Expression of interleukin-1 receptors and their role in interleukin-1 actions in murine microglial cells. J Neurochem 2002;83: 754–763.

    CAS  PubMed  Google Scholar 

  135. Rothwell N. Interleukin-1 and neuronal injury: mechanisms, modification, and therapeutic potential. Brain Behav Immun 2003;17: 152–157.

    PubMed  Google Scholar 

  136. Toulmond S, Rothwell NJ. Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat. Brain Res 1995;671: 261–266.

    CAS  PubMed  Google Scholar 

  137. Tehranian R, Andell-Jonsson S, Beni SM, et al. Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J Neurotrauma 2002;19: 939–951.

    PubMed  Google Scholar 

  138. Basu A, Krady JK, O’Malley M, Styren SD, DeKosky ST, Levison SW. The type 1 interleukin-1 receptor is essential for the efficient activation of microglia and the induction of multiple proinflammatory mediators in response to brain injury. J Neurosci 2002;22: 6071–6082.

    CAS  PubMed  Google Scholar 

  139. Ross SA, Halliday MI, Campbell GC, Byrnes DP, Rowlands BJ. The presence of tumour necrosis factor in CSF and plasma after severe head injury. Br J Neurosurg 1994;8: 419–425.

    CAS  PubMed  Google Scholar 

  140. Goodman JC, Robertson CS, Grossman RG, Narayan RK. Elevation of tumor necrosis factor in head injury. J Neuroimmunol 1990;30: 213–217.

    CAS  PubMed  Google Scholar 

  141. Stover JF, Schöning B, Beyer TF, Woiciechowsky C, Unterberg AW. Temporal profile of cerebrospinal fluid glutamate, interleukin-6, and tumor necrosis factor-α in relation to brain edema and contusion following controlled cortical impact injury in rats. Neurosci Lett 2000;288: 25–28.

    CAS  PubMed  Google Scholar 

  142. Shohami E, Novikov M, Bass R, Yamin A, Gallily R. Closed head injury triggers early production of TNF α and IL-6 by brain tissue. J Cereb Blood Flow Metab 1994;14: 615–619.

    CAS  PubMed  Google Scholar 

  143. Fan L, Young PR, Barone FC, Feuerstein GZ, Smith DH, Mc-Intosh TK. Experimental brain injury induces differential expression of tumor necrosis factor-α mRNA in the CNS. Brain Res Mol Brain Res 1996;36: 287–291.

    CAS  PubMed  Google Scholar 

  144. Sullivan PG, Bruce-Keller AJ, Rabchevsky AG, et al. Exacerbation of damage and altered NF-κB activation in mice lacking tumor necrosis factor receptors after traumatic brain injury. J Neurosci 1999;19: 6248–6256.

    CAS  PubMed  Google Scholar 

  145. Scherbel U, Raghupathi R, Nakamura M, et al. Differential acute and chronic responses of tumor necrosis factor-deficient mice to experimental brain injury. Proc Natl Acad Sci U S A 1999;96: 8721–8726.

    CAS  PubMed  Google Scholar 

  146. Morganti-Kossmann MC, Hans VH, Lenzlinger PM, et al. TGF-β is elevated in the CSF of patients with severe traumatic brain injuries and parallels blood-brain barrier function. J Neurotrauma 1999;16: 617–628.

    CAS  PubMed  Google Scholar 

  147. Csuka E, Morganti-Kossmann MC, Lenzlinger PM, Joller H, Trentz O, Kossmann T. IL-10 levels in cerebrospinal fluid and serum of patients with severe traumatic brain injury: relationship to IL-6, TNF-α, TGF-β1 and blood-brain barrier function. J Neuroimmunol 1999;101: 211–221.

    CAS  PubMed  Google Scholar 

  148. Knoblach SM, Faden AI. Interleukin-10 improves outcome and alters proinflammatory cytokine expression after experimental traumatic brain injury. Exp Neurol 1998;153: 143–151.

    CAS  PubMed  Google Scholar 

  149. Kremlev SG, Palmer C. Interleukin-10 inhibits endotoxin-induced pro-inflammatory cytokines in microglial cell cultures. J Neuroimmunol 2005;162: 71–80.

    CAS  PubMed  Google Scholar 

  150. Tyor WR, Avgeropoulos N, Ohlandt G, Hogan EL. Treatment of spinal cord impact injury in the rat with transforming growth factor-β. J Neurol Sci 2002;200: 33–41.

    CAS  PubMed  Google Scholar 

  151. Hamada Y, Ikata T, Katoh S, et al. Effects of exogenous transforming growth factor-β 1 on spinal cord injury in rats. Neurosci Lett 1996;203: 97–100.

    CAS  PubMed  Google Scholar 

  152. Lucin KM, Wyss-Coray T. Immune activation in brain aging and neurodegeneration: too much or too little? Neuron 2009;64: 110–153.

    CAS  PubMed  Google Scholar 

  153. Galbraith S. Head injuries in the elderly. Br Med J (Clin Res Ed) 1987;294: 325.

    CAS  Google Scholar 

  154. Pennings JL, Bachulis BL, Simons CT, Slazinski T. Survival after severe brain injury in the aged. Arch Surg 1993;128: 787–793; discussion 793–784.

    CAS  PubMed  Google Scholar 

  155. Sandhir R, Onyszchuk G, Berman NE. Exacerbated glial response in the aged mouse hippocampus following controlled cortical impact injury. Exp Neurol 2008;213: 372–380.

    CAS  PubMed  Google Scholar 

  156. Conde JR, Streit WJ. Effect of aging on the microglial response to peripheral nerve injury. Neurobiol Aging 2006;27: 1451–1461.

    CAS  PubMed  Google Scholar 

  157. Popa-Wagner A, Carmichael ST, Kokaia Z, Kessler C, Walker LC. The response of the aged brain to stroke: too much, too soon? Curr Neurovasc Res 2007;4: 216–227.

    CAS  PubMed  Google Scholar 

  158. Graves AB, White E, Koepsell TD, et al. The association between head trauma and Alzheimer’s disease. Am J Epidemiol 1990;131: 491–501.

    CAS  PubMed  Google Scholar 

  159. Mortimer JA, French LR, Hutton JT, Schuman LM. Head injury as a risk factor for Alzheimer’s disease. Neurology 1985;35: 264–267.

    CAS  PubMed  Google Scholar 

  160. van Duijn CM, Tanja TA, Haaxma R, et al. Head trauma and the risk of Alzheimer’s disease. Am J Epidemiol 1992;135: 775–782.

    PubMed  Google Scholar 

  161. Ikonomovic MD, Uryu K, Abrahamson EE, et al. Alzheimer’s pathology in human temporal cortex surgically excised after severe brain injury. Exp Neurol 2004;190: 192–203.

    CAS  PubMed  Google Scholar 

  162. Roberts GW, Gentleman SM, Lynch A, Graham DI. β A4 amyloid protein deposition in brain after head trauma. Lancet 1991;338: 1422–1423.

    CAS  PubMed  Google Scholar 

  163. Roberts GW, Gentleman SM, Lynch A, Murray L, Landon M, Graham DI. β amyloid protein deposition in the brain after severe head injury: implications for the pathogenesis of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1994;57: 419–425.

    CAS  PubMed  Google Scholar 

  164. Johnson VE, Stewart W, Smith DH. Traumatic brain injury and amyloid-β pathology: a link to Alzheimer’s disease? Nat Rev Neurosci 2010;11: 361–370.

    CAS  Google Scholar 

  165. Yankner BA, Dawes LR, Fisher S, Villa-Komaroff L, Oster-Granite ML, Neve RL. Neurotoxicity of a fragment of the amyloid precursor associated with Alzheimer’s disease. Science 1989;245: 417–420.

    CAS  PubMed  Google Scholar 

  166. Cagnin A, Brooks DJ, Kennedy AM, et al. In-vivo measurement of activated microglia in dementia [Erratum in: Lancet 2001;358: 766]. Lancet 2001;358: 461–467.

    CAS  PubMed  Google Scholar 

  167. McGeer PL, Itagaki S, Tago H, McGeer EG. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987;79: 195–200.

    CAS  PubMed  Google Scholar 

  168. Ii M, Sunamoto M, Ohnishi K, Ichimori Y. β-Amyloid protein-dependent nitric oxide production from microglial cells and neurotoxicity. Brain Res 1996;720: 93–100.

    CAS  PubMed  Google Scholar 

  169. Holmin S, Mathiesen T. Long-term intracerebral inflammatory response after experimental focal brain injury in rat. Neuroreport 1999;10: 1889–1891.

    CAS  PubMed  Google Scholar 

  170. Yrjänheikki J, Keinänen R, Pellikka M, Hökfelt T, Koistinaho J. Tetracyclines inhibit microglial activation and are neuroprotective in global brain ischemia. Proc Natl Acad Sci U S A 1998;95: 15769–15774.

    PubMed  Google Scholar 

  171. Tikka T, Fiebich BL, Goldsteins G, Keinanen R, Koistinaho J. Minocycline, a tetracycline derivative, is neuroprotective against excitotoxicity by inhibiting activation and proliferation of microglia. J Neurosci 2001;21: 2580–2588.

    CAS  PubMed  Google Scholar 

  172. Kremlev SG, Roberts RL, Palmer C. Differential expression of chemokines and chemokine receptors during microglial activation and inhibition. J Neuroimmunol 2004;149: 1–9.

    CAS  PubMed  Google Scholar 

  173. Choi SH, Lee DY, Chung ES, Hong YB, Kim SU, Jin BK. Inhibition of thrombin-induced microglial activation and NADPH oxidase by minocycline protects dopaminergic neurons in the substantia nigra in vivo. J Neurochem 2005;95: 1755–1765.

    CAS  PubMed  Google Scholar 

  174. Seabrook TJ, Jiang L, Maier M, Lemere CA. Minocycline affects microglia activation, Aβ deposition, and behavior in APP-tg mice. Glia 2006;53: 776–782.

    PubMed  Google Scholar 

  175. Sanchez Mejia RO, Ona VO, Li M, Friedlander RM. Minocycline reduces traumatic brain injury-mediated caspase-1 activation, tissue damage, and neurological dysfunction. Neurosurgery 2001;48: 1393–1399; discussion 1399–1401.

    CAS  PubMed  Google Scholar 

  176. Lee SM, Yune TY, Kim SJ, et al. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. J Neurotrauma 2003;20: 1017–1027.

    PubMed  Google Scholar 

  177. Wells JE, Hurlbert RJ, Fehlings MG, Yong VW. Neuroprotection by minocycline facilitates significant recovery from spinal cord injury in mice. Brain 2003;126: 1628–1637.

    PubMed  Google Scholar 

  178. Stirling DP, Khodarahmi K, Liu J, et al. Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal die-back, and improves functional outcome after spinal cord injury. J Neurosci 2004;24: 2182–2190.

    CAS  PubMed  Google Scholar 

  179. Teng YD, Choi H, Onario RC, et al. Minocycline inhibits contusion-triggered mitochondrial cytochrome c release and mitigates functional deficits after spinal cord injury. Proc Natl Acad Sci U S A 2004;101: 3071–3076.

    CAS  PubMed  Google Scholar 

  180. Yune TY, Lee JY, Jung GY, et al. Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci 2007;27: 7751–7761.

    CAS  PubMed  Google Scholar 

  181. Festoff BW, Ameenuddin S, Arnold PM, Wong A, Santacruz KS, Citron BA. Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J Neurochem 2006;97: 1314–1326.

    CAS  PubMed  Google Scholar 

  182. Berger J, Moller DE. The mechanisms of action of PPARs. Annu Rev Med 2002;53: 409–435.

    CAS  PubMed  Google Scholar 

  183. Chawla A, Barak Y, Nagy L, Liao D, Tontonoz P, Evans RM. PPAR-γ dependent and independent effects on macrophage-gene expression in lipid metabolism and inflammation. Nat Med 2001;7: 48–52.

    CAS  PubMed  Google Scholar 

  184. Pereira MP, Hurtado O, Cárdenas A, et al. Rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J2 cause potent neuroprotection after experimental stroke through noncompletely overlapping mechanisms. J Cereb Blood Flow Metab 2006;26: 218–229.

    CAS  PubMed  Google Scholar 

  185. Sundararajan S, Gamboa JL, Victor NA, Wanderi EW, Lust WD, Landreth GE. Peroxisome proliferator-activated receptor-γ ligands reduce inflammation and infarction size in transient focal ischemia. Neuroscience 2005;130: 685–696.

    CAS  PubMed  Google Scholar 

  186. Park SW, Yi JH, Miranpuri G, et al. Thiazolidinedione class of peroxisome proliferator-activated receptor γ agonists prevents neuronal damage, motor dysfunction, myelin loss, neuropathic pain, and inflammation after spinal cord injury in adult rats. J Pharmacol Exp Ther 2007;320: 1002–1012.

    CAS  PubMed  Google Scholar 

  187. Collino M, Aragno M, Mastrocola R, et al. Modulation of the oxidative stress and inflammatory response by PPAR-γ agonists in the hippocampus of rats exposed to cerebral ischemia/reperfusion. Eur J Pharmacol 2006;530: 70–80.

    CAS  PubMed  Google Scholar 

  188. Bernardo A, Minghetti L. PPAR-γ agonists as regulators of microglial activation and brain inflammation. Curr Pharm Des 2006;12: 93–109.

    CAS  PubMed  Google Scholar 

  189. Bethea JR, Nagashima H, Acosta MC, et al. Systemically administered interleukin-10 reduces tumor necrosis factor-α production and significantly improves functional recovery following traumatic spinal cord injury in rats. J Neurotrauma 1999;16: 851–863.

    CAS  PubMed  Google Scholar 

  190. Morganti-Kossmann MC, Rancan M, Stahel PF, Kossmann T. Inflammatory response in acute traumatic brain injury: a double-edged sword. Curr Opin Crit Care 2002;8: 101–105.

    PubMed  Google Scholar 

  191. Lenzlinger PM, Morganti-Kossmann MC, Laurer HL, McIntosh TK. The duality of the inflammatory response to traumatic brain injury. Mol Neurobiol 2001;24: 169–181.

    CAS  PubMed  Google Scholar 

  192. Tian DS, Xie MJ, Yu ZY, et al. Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. Brain Res 2007;1135: 177–193.

    CAS  PubMed  Google Scholar 

  193. Dijkstra S, Duis S, Pans IM, et al. Intraspinal administration of an antibody against CD81 enhances functional recovery and tissue sparing after experimental spinal cord injury. Exp Neurol 2006;202: 57–66.

    CAS  PubMed  Google Scholar 

  194. Gadient RA, Cron KC, Otten U. Interleukin-1β and tumor necrosis factor-α synergistically stimulate nerve growth factor (NGF) release from cultured rat astrocytes. Neurosci Lett 1990;117: 335–340.

    CAS  PubMed  Google Scholar 

  195. Bouhy D, Malgrange B, Multon S, et al. Delayed GM-CSF treatment stimulates axonal regeneration and functional recovery in paraplegic rats via an increased BDNF expression by endogenous macrophages. FASEB J 2006;20: 1239–1241.

    CAS  PubMed  Google Scholar 

  196. Prewitt CM, Niesman IR, Kane CJ, Houle JD. Activated macrophage/microglial cells can promote the regeneration of sensory axons into the injured spinal cord. Exp Neurol 1997;148: 433–443.

    CAS  PubMed  Google Scholar 

  197. Stoica B, Byrnes K, Faden AI. Multifunctional drug treatment in neurotrauma. Neurotherapeutics 2009;6: 14–27.

    CAS  PubMed  Google Scholar 

  198. Byrnes KR, Loane DJ, Faden AI. Metabotropic glutamate receptors as targets for multipotential treatment of neurological disorders. Neurotherapeutics 2009;6: 94–107.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Anesthesiology & Center for Shock, Trauma and Anesthesiology Research (STAR), National Study Center for Trauma and EMS, University of Maryland School of Medicine, 21201, Baltimore, Maryland

    David J. Loane

  2. Room B2048, Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, 20814, Bethesda, MD

    Kimberly R. Byrnes

Authors
  1. David J. Loane
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Kimberly R. Byrnes
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Kimberly R. Byrnes.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Loane, D.J., Byrnes, K.R. Role of microglia in neurotrauma. Neurotherapeutics 7, 366–377 (2010). https://doi.org/10.1016/j.nurt.2010.07.002

Download citation

  • Issue Date: October 2010

  • DOI: https://doi.org/10.1016/j.nurt.2010.07.002

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key Words

  • Microglia
  • spinal cord injury
  • traumatic brain injury
  • inflammation
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.