Skip to main content

Advertisement

SpringerLink
Go to cart
  • Log in
  1. Home
  2. Neurotherapeutics
  3. Article
Microglial activation and chronic neurodegeneration
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

The role of microglia in the development of neurodegeneration

26 May 2020

Aigul R. Saitgareeva, Kirill V. Bulygin, … Leila R. Akhmadeeva

Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes

26 November 2020

Hyuk Sung Kwon & Seong-Ho Koh

Activation of microglia and astrocytes: a roadway to neuroinflammation and Alzheimer’s disease

14 March 2019

Darshpreet Kaur, Vivek Sharma & Rahul Deshmukh

Astrocytic and microglial cells as the modulators of neuroinflammation in Alzheimer’s disease

17 August 2022

Deepali Singh

The reciprocal interactions between microglia and T cells in Parkinson’s disease: a double-edged sword

12 February 2023

Yuxiang Xu, Yongjie Li, … Jianshe Wei

Programmed Death of Microglia in Alzheimer’s Disease: Autophagy, Ferroptosis, and Pyroptosis

05 January 2023

Z. Qiu, H. Zhang, … Changhong Miao

Immunoregulation of microglial polarization: an unrecognized physiological function of α-synuclein

17 September 2020

Na Li, Tessandra Stewart, … Jing Zhang

The cytokines interleukin-6 and interferon-α induce distinct microglia phenotypes

16 April 2022

Phillip K. West, Andrew N. McCorkindale, … Markus J. Hofer

Microglia dynamics in aging-related neurobehavioral and neuroinflammatory diseases

17 November 2022

Nima Javanmehr, Kiarash Saleki, … Nima Rezaei

Download PDF
  • Review Article
  • Published: October 2010

Microglial activation and chronic neurodegeneration

  • Melinda E. Lull1 &
  • Michelle L. Block1 

Neurotherapeutics volume 7, pages 354–365 (2010)Cite this article

  • 5348 Accesses

  • 654 Citations

  • 32 Altmetric

  • Metrics details

Summary

Microglia, the resident innate immune cells in the brain, have long been implicated in the pathology of neurode-generative diseases. Accumulating evidence points to activated microglia as a chronic source of multiple neurotoxic factors, including tumor necrosis factor-α, nitric oxide, interleukin-1β, and reactive oxygen species (ROS), driving progressive neuron damage. Microglia can become chronically activated by either a single stimulus (e.g., lipopolysaccharide or neuron damage) or multiple stimuli exposures to result in cumulative neuronal loss with time. Although the mechanisms driving these phenomena are just beginning to be understood, reactive microgliosis (the microglial response to neuron damage) and ROS have been implicated as key mechanisms of chronic and neurotoxic microglial activation, particularly in the case of Parkinson’s disease. We review the mechanisms of neurotoxicity associated with chronic microglial activation and discuss the role of neuronal death and microglial ROS driving the chronic and toxic microglial phenotype.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. Block ML, Hong JS. Chronic microglial activation and progressive dopaminergic neurotoxicity. Biochem Soc Trans 2007;35: 1127–32.

    CAS  PubMed  Google Scholar 

  2. del Rio-Hortega P. Cytology and cellular pathology of the nervous system. New York: Penfeild Wed, 1932.

    Google Scholar 

  3. Morris L, Graham CF, Gordon S. Macrophages in haemopoietic and other tissues of the developing mouse detected by the monoclonal antibody F4/80. Development 1991;112: 517–26.

    CAS  PubMed  Google Scholar 

  4. Alliot F, Godin I, Pessac B. Microglia derive from progenitors, originating from the yolk sac, and which proliferate in the brain. Brain Res Dev Brain Res 1999;117: 145–52.

    CAS  PubMed  Google Scholar 

  5. Rezaie P, Trillo-Pazos G, Greenwood J, Everall IP, Male DK. Motility and ramification of human fetal microglia in culture: an investigation using time-lapse video microscopy and image analysis. Exp Cell Res 2002;274: 68–82.

    CAS  PubMed  Google Scholar 

  6. Ling EA, Wong WC. The origin and nature of ramified and amoeboid microglia: a historical review and current concepts. Glia 1993;7: 9–18.

    CAS  PubMed  Google Scholar 

  7. Dalmau I, Vela JM, Gonzalez B, Finsen B, Castellano B. Dynamics of microglia in the developing rat brain. J Comp Neurol 2003;458: 144–57.

    PubMed  Google Scholar 

  8. Soulet D, Rivest S. Bone-marrow-derived microglia: myth or reality? Curr Opin Pharmacol 2008;8: 508–18.

    CAS  PubMed  Google Scholar 

  9. Mildner A, Schmidt H, Nitsche M, et al. Microglia in the adult brain arise from Ly-6ChiCCR2+ monocytes only under defined host conditions. Nat Neurosci 2007;10: 1544–53.

    CAS  PubMed  Google Scholar 

  10. Geissmann F, Jung S, Littman DR. Blood monocytes consist of two principal subsets with distinct migratory properties. Immunity 2003;19: 71–82.

    CAS  PubMed  Google Scholar 

  11. Flugel A, Bradl M, Kreutzberg GW, Graeber MB. Transformation of donor-derived bone marrow precursors into host microglia during autoimmune CNS inflammation and during the retrograde response to axotomy. J Neurosci Res 2001;66: 74–82.

    CAS  PubMed  Google Scholar 

  12. Hickey WF, Kimura H. Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 1988;239: 290–2.

    CAS  PubMed  Google Scholar 

  13. Streit WJ, Graeber MB, Kreutzberg GW. Expression of Ia antigen on perivascular and microglial cells after sublethal and lethal motor neuron injury. Exp Neurol 1989;105: 115–26.

    CAS  PubMed  Google Scholar 

  14. Shechter R, London A, Varol C, et al. Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 2009;6: e1000113.

    PubMed  Google Scholar 

  15. Lawson LJ, Perry VH, Gordon S. Turnover of resident microglia in the normal adult mouse brain. Neuroscience 1992;48: 405–15.

    CAS  PubMed  Google Scholar 

  16. Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FM. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007;10: 1538–43.

    CAS  PubMed  Google Scholar 

  17. Alliot F, Lecain E, Grima B, Pessac B. Microglial progenitors with a high proliferative potential in the embryonic and adult mouse brain. Proc Natl Acad Sci U S A 1991;88: 1541–5.

    CAS  PubMed  Google Scholar 

  18. Aloisi F. Immune function of microglia. Glia 2001;36: 165–79.

    CAS  PubMed  Google Scholar 

  19. Adams RA, Bauer J, Flick MJ, et al. The fibrin-derived gamma377-395 peptide inhibits microglia activation and suppresses relapsing paralysis in central nervous system autoimmune disease. J Exp Med 2007;204: 571–82.

    CAS  PubMed  Google Scholar 

  20. Hoek RM, Ruuls SR, Murphy CA, et al. Down-regulation of the macrophage lineage through interaction with OX2 (CD200). Science 2000;290: 1768–71.

    CAS  PubMed  Google Scholar 

  21. Harrison JK, Jiang Y, Chen S, et al. Role for neuronally derived fractalkine in mediating interactions between neurons and CX3CR1-expressing microglia. Proc Natl Acad Sci U S A 1998;95: 10896–901.

    CAS  PubMed  Google Scholar 

  22. Lawson LJ, Perry VH, Dri P, Gordon S. Heterogeneity in the distribution and morphology of microglia in the normal adult mouse brain. Neuroscience 1990;39: 151–70.

    CAS  PubMed  Google Scholar 

  23. Davalos D, Grutzendler J, Yang G, et al. ATP mediates rapid microglial response to local brain injury in vivo. Nat Neurosci 2005;8: 752–8.

    CAS  PubMed  Google Scholar 

  24. Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005;308: 1314–1318.

    CAS  PubMed  Google Scholar 

  25. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci 1996;19: 312–8.

    CAS  PubMed  Google Scholar 

  26. Graeber MB, Streit WJ, Kreutzberg GW. Axotomy of the rat facial nerve leads to increased CR3 complement receptor expression by activated microglial cells. J Neurosci Res 1988;21: 18–24.

    CAS  PubMed  Google Scholar 

  27. Colton CA, Gilbert DL. Production of Superoxide anions by a CNS macrophage, the microglia. FEBS Lett 1987;223: 284–8.

    CAS  PubMed  Google Scholar 

  28. Hurley SD, Walter SA, Semple-Rowland SL, Streit WJ. Cytokine transcripts expressed by microglia in vitro are not expressed by ameboid microglia of the developing rat central nervous system. Glia 1999;25: 304–9.

    CAS  PubMed  Google Scholar 

  29. Si Q, Kim MO, Zhao ML, Landau NR, Goldstein H, Lee S. Vpr- and Nef-dependent induction of RANTES/CCL5 in microglial cells. Virology 2002;301: 342–53.

    CAS  PubMed  Google Scholar 

  30. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther 2003;304: 1–7.

    CAS  PubMed  Google Scholar 

  31. Streit WJ, Graeber MB, Kreutzberg GW. Functional plasticity of microglia: a review. Glia 1988;1: 301–7.

    CAS  PubMed  Google Scholar 

  32. Streit WJ, Walter SA, Pennell NA. Reactive microgliosis. Prog Neurobiol 1999;57: 563–81.

    CAS  PubMed  Google Scholar 

  33. Lynch MA. The multifaceted profile of activated microglia. Mol Neurobiol 2009;40: 139–56.

    CAS  PubMed  Google Scholar 

  34. Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci 1996;16: 2508–21.

    CAS  PubMed  Google Scholar 

  35. Blinzinger K, Kreutzberg G. Displacement of synaptic terminals from regenerating motoneurons by microglial cells. Z Zeilforsch Mikrosk Anat 1968;85: 145–57.

    CAS  Google Scholar 

  36. Graeber MB, Streit WJ. Microglia: biology and pathology. Acta Neuropathol;119:89–105.

  37. Zhong Y, Zhou LJ, Ren WJ, et al. The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: the role of tumor necrosis factor-alpha. Brain Behav Immun 2010;24: 874–80.

    CAS  PubMed  Google Scholar 

  38. Batchelor PE, Liberatore GT, Wong JY, et al. Activated macrophages and microglia induce dopaminergic sprouting in the injured striatum and express brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor. J Neurosci 1999;19: 1708–1716.

    CAS  PubMed  Google Scholar 

  39. Batchelor PE, Porritt MJ, Martinello P, et al. Macrophages and microglia produce local trophic gradients that stimulate axonal sprouting toward but not beyond the wound edge. Mol Cell Neurosci 2002;21: 436–53.

    CAS  PubMed  Google Scholar 

  40. Yamada J, Hayashi Y, Jinno S, et al. Reduced synaptic activity precedes synaptic stripping in vagal motoneurons after axotomy. Glia 2008;56: 1448–62.

    PubMed  Google Scholar 

  41. Trapp BD, Wujek JR, Criste GA, et al. Evidence for synaptic stripping by cortical microglia. Glia 2007;55: 360–8.

    PubMed  Google Scholar 

  42. Siskova Z, Page A, O’Connor V, Perry VH. Degenerating synaptic boutons in prion disease: microglia activation without synaptic stripping. Am J Pathol 2009;175: 1610–21.

    CAS  PubMed  Google Scholar 

  43. Liao H, Bu WY, Wang TH, Ahmed S, Xiao ZC. Tenascin-R plays a role in neuroprotection via its distinct domains that coordinate to modulate the microglia function. J Biol Chem 2005;280: 8316–8323.

    CAS  PubMed  Google Scholar 

  44. Morgan SC, Taylor DL, Pocock JM. Microglia release activators of neuronal proliferation mediated by activation of mitogen-activated protein kinase, phosphatidylinositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 2004;90: 89–101.

    CAS  PubMed  Google Scholar 

  45. Ransohoff RM, Perry VH. Microglial physiology: unique stimuli, specialized responses. Annu Rev Immunol 2009;27: 119–45.

    CAS  PubMed  Google Scholar 

  46. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol 2005;76: 77–98.

    CAS  PubMed  Google Scholar 

  47. Graeber MB, Streit WJ, Kreutzberg GW. The microglial cytoskeleton: vimentin is localized within activated cells in situ. J Neurocytol 1988;17: 573–80.

    CAS  PubMed  Google Scholar 

  48. Oehmichen W, Gencic M. Experimental studies on kinetics and functions of monuclear phagozytes of the central nervous system. Acta Neuropathol Suppl (Berl) 1975;(suppl 6):285–90.

  49. Pei Z, Pang H, Qian L, et al. MAC1 mediates LPS-induced production of Superoxide by microglia: the role of pattern recognition receptors in dopaminergic neurotoxicity. Glia 2007;55: 1362–73.

    PubMed  Google Scholar 

  50. Qin L, Li G, Qian X, et al. Interactive role of the toll-like receptor 4 and reactive oxygen species in LPS-induced microglia activation. Glia 2005;52: 78–84.

    PubMed  Google Scholar 

  51. Qin L, Liu Y, Qian X, Hong JS, Block ML. Microglial NADPH oxidase mediates leucine enkephalin dopaminergic neuroprotection. Ann N Y Acad Sci 2005;1053: 107–20.

    CAS  PubMed  Google Scholar 

  52. Wu X, Block ML, Zhang W, et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxid Redox Signal 2005;7: 654–61.

    CAS  PubMed  Google Scholar 

  53. Mao H, Fang X, Floyd KM, Polcz JE, Zhang P, Liu B. Induction of microglial reactive oxygen species production by the organochlorinated pesticide dieldrin. Brain Res 2007;1186: 267–74.

    CAS  PubMed  Google Scholar 

  54. Mao H, Liu B. Synergistic microglial reactive oxygen species generation induced by pesticides lindane and dieldrin. Neuroreport 2008;19: 1317–20.

    CAS  PubMed  Google Scholar 

  55. Gao HM, Hong JS, Zhang W, Liu B. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. J Neurosci 2003;23: 1228–36.

    CAS  PubMed  Google Scholar 

  56. Bamberger ME, Landreth GE. Microglial interaction with beta-amyloid: implications for the pathogenesis of Alzheimer’s disease. Microsc Res Tech 2001;54: 59–70.

    CAS  PubMed  Google Scholar 

  57. Zhang W, Wang T, Pei Z, et al. Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease. Faseb J 2005;19: 533–42.

    CAS  PubMed  Google Scholar 

  58. Turchan-Cholewo J, Dimayuga FO, Gupta S, et al. Morphine and HIV-Tat increase microglial-free radical production and oxidative stress: possible role in cytokine regulation. J Neurochem 2009;108: 202–15.

    CAS  PubMed  Google Scholar 

  59. Block ML, Calderon-Garciduenas L. Air pollution: mechanisms of neuroinflammation and CNS disease. Trends Neurosci 2009: 32: 506–16.

    CAS  PubMed  Google Scholar 

  60. Moss DW, Bates TE. Activation of murine microglial cell lines by lipopolysaccharide and interferon-gamma causes NO-mediated decreases in mitochondrial and cellular function. Eur J Neurosci 2001;13: 529–38.

    CAS  PubMed  Google Scholar 

  61. Liu B, Gao HM, Wang JY, Jeohn GH, Cooper CL, Hong JS. Role of nitric oxide in inflammation-mediated neurodegeneration. Ann N Y Acad Sci 2002;962: 318–31.

    CAS  PubMed  Google Scholar 

  62. Sawada M, Kondo N, Suzumura A, Marunouchi T. Production of tumor necrosis factor-alpha by microglia and astrocytes in culture. Brain Res 1989;491: 394–7.

    CAS  PubMed  Google Scholar 

  63. Lee SC, Liu W, Dickson DW, Brosnan CF, Berman JW. Cytokine production by human fetal microglia and astrocytes. Differential induction by lipopolysaccharide and IL-1 beta. J Immunol 1993;150: 2659–67.

    CAS  PubMed  Google Scholar 

  64. Wang T, Pei Z, Zhang W, et al. MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration. Faseb J 2005;19: 1134–1136.

    CAS  PubMed  Google Scholar 

  65. Liu B, Gao HM, Hong JS. Parkinson’s disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation. Environ Health Perspect 2003;111: 1065–1073.

    CAS  PubMed  Google Scholar 

  66. Olson EE, McKeon RJ. Characterization of cellular and neurological damage following unilateral hypoxia/ischemia. J Neurol Sci 2004;227: 7–19.

    CAS  PubMed  Google Scholar 

  67. Morioka T, Kalehua AN, Streit WJ. Characterization of microglial reaction after middle cerebral artery occlusion in rat brain. J Comp Neurol 1993;327: 123–32.

    CAS  PubMed  Google Scholar 

  68. Tsuda M, Mizokoshi A, Shigemoto-Mogami Y, Koizumi S, Inoue K. Activation of p38 mitogen-activated protein kinase in spinal hyperactive microglia contributes to pain hypersensitivity following peripheral nerve injury. Glia 2004;45: 89–95.

    PubMed  Google Scholar 

  69. McGeer PL, Itagaki S, Boyes BE, McGeer EG. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology 1988;38: 1285–91.

    CAS  PubMed  Google Scholar 

  70. Ziehn MO, Avedisian AA, Tiwari-Woodruff S, Voskuhl RR. Hippocampal CA1 atrophy and synaptic loss during experimental autoimmune encephalomyelitis, EAE. Lab Invest 2010;90: 774–786.

    PubMed  Google Scholar 

  71. Banati RB, Gehrmann J, Kellner M, Holsboer F. Antibodies against microglia/brain macrophages in the cerebrospinal fluid of a patient with acute amyotrophic lateral sclerosis and presenile dementia. Clin Neuropathol 1995;14: 197–200.

    CAS  PubMed  Google Scholar 

  72. Hall ED, Oostveen JA, Gurney ME. Relationship of microglial and astrocytic activation to disease onset and progression in a transgenic model of familial ALS. Glia 1998;23: 249–56.

    CAS  PubMed  Google Scholar 

  73. Bell JE, Arango JC, Robertson R, Brettle RP, Leen C, Simmonds P. HIV and drug misuse in the Edinburgh cohort. J Acquir Immune Defic Syndr 2002;31(suppl 2): S35–42.

    CAS  PubMed  Google Scholar 

  74. Miller KR, Streit WJ. The effects of aging, injury and disease on microglial function: a case for cellular senescence. Neuron Glia Biol 2007;3: 245–53.

    PubMed  Google Scholar 

  75. Finch GL, Hobbs CH, Blair LF, et al. Effects of subchronic inhalation exposure of rats to emissions from a diesel engine burning soybean oil-derived biodiesel fuel. Inhal Toxicol 2002;14: 1017–48.

    CAS  PubMed  Google Scholar 

  76. Yankner BA. Amyloid and Alzheimer’s disease—cause or effect? Neurobiol Aging 1989;10: 470–8.

    CAS  PubMed  Google Scholar 

  77. Rogers J, Luber-Narod J, Styren SD, Civin WH. Expression of immune system-associated antigens by cells of the human central nervous system: relationship to the pathology of Alzheimer’s disease. Neurobiol Aging 1988;9: 339–49.

    CAS  PubMed  Google Scholar 

  78. McGeer PL, Itagaki S, Tago H, McGeer EG. Reactive microglia in patients with senile dementia of the Alzheimer type are positive for the histocompatibility glycoprotein HLA-DR. Neurosci Lett 1987;79: 195–200.

    CAS  PubMed  Google Scholar 

  79. Yankner BA, Duffy LK, Kirschner DA. Neurotrophic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990;250: 279–82.

    CAS  PubMed  Google Scholar 

  80. Sasaki A, Yamaguchi H, Ogawa A, Sugihara S, Nakazato Y. Microglial activation in early stages of amyloid beta protein deposition. Acta Neuropathol (Berl) 1997;94: 316–22.

    CAS  Google Scholar 

  81. Meda L, Cassatella MA, Szendrei GI, et al. Activation of microglial cells by beta-amyloid protein and interferon-gamma. Nature 1995;374: 647–50.

    CAS  PubMed  Google Scholar 

  82. Banati RB, Newcombe J, Gunn RN, et al. The peripheral benzodiazepine binding site in the brain in multiple sclerosis: quantitative in vivo imaging of microglia as a measure of disease activity. Brain 2000;123(Pt 11): 2321–37.

    PubMed  Google Scholar 

  83. Peterson JW, Bo L, Mork S, Chang A, Trapp BD. Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 2001;50: 389–400.

    CAS  PubMed  Google Scholar 

  84. Takeuchi H, Wang J, Kawanokuchi J, Mitsuma N, Mizuno T, Suzumura A. Interferon-gamma induces microglial-activation-induced cell death: a hypothetical mechanism of relapse and remission in multiple sclerosis. Neurobiol Dis 2006;22: 33–9.

    CAS  PubMed  Google Scholar 

  85. Murphy AC, Lalor SJ, Lynch MA, Mills KH. Infiltration of Th1 and Th17 cells and activation of microglia in the CNS during the course of experimental autoimmune encephalomyelitis. Brain Behav Immun 2010;24: 641–651.

    CAS  PubMed  Google Scholar 

  86. Liu Y, Hao W, Letiembre M, et al. Suppression of microglial inflammatory activity by myelin phagocytosis: role of p47-PHOX-mediated generation of reactive oxygen species. J Neurosci 2006;26: 12904–13.

    CAS  PubMed  Google Scholar 

  87. Mack CL, Vanderlugt-Castaneda CL, Neville KL, Miller SD. Microglia are activated to become competent antigen presenting and effector cells in the inflammatory environment of the Theiler’s virus model of multiple sclerosis. J Neuroimmunol 2003;144: 68–79.

    CAS  PubMed  Google Scholar 

  88. Jordan CA, Watkins BA, Kufta C, Dubois-Dalcq M. Infection of brain microglial cells by human immunodeficiency virus type 1 is CD4 dependent. J Virol 1991;65: 736–42.

    CAS  PubMed  Google Scholar 

  89. Speth C, Dierich MP, Sopper S. HIV-infection of the cental nervous system: the tightrope walk of innate immunity. Mol Immunol 2005;42: 213–28.

    CAS  PubMed  Google Scholar 

  90. Brabers NA, Nottet HS. Role of the pro-inflammatory cytokines TNF-alpha and IL-1beta in HIV-associated dementia. Eur J Clin Invest 2006;36: 447–58.

    CAS  PubMed  Google Scholar 

  91. Turchan-Cholewo J, Dimayuga VM, Gupta S, Gorospe RM, Keller JN, Bruce-Keller AJ. NADPH oxidase drives cytokine and neurotoxin release from microglia and macrophages in response to HIV-Tat. Antioxid Redox Signal 2009;11: 193–204.

    CAS  PubMed  Google Scholar 

  92. Polazzi E, Contestabile A. Neuron-conditioned media differentially affect the survival of activated or unstimulated microglia: evidence for neuronal control on apoptotic elimination of activated microglia. J Neuropathol Exp Neurol 2003;62: 351–62.

    PubMed  Google Scholar 

  93. McGeer EG, Klegeris A, McGeer PL. Inflammation, the complement system and the diseases of aging. Neurobiol Aging 2005;26(suppl 1): 94–7.

    PubMed  Google Scholar 

  94. Block ML, Zecca L, Hong JS. Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007;8: 57–69.

    CAS  PubMed  Google Scholar 

  95. Long-Smith CM, Sullivan AM, Nolan YM. The influence of microglia on the pathogenesis of Parkinson’s disease. Prog Neurobiol 2009;89: 277–87.

    CAS  PubMed  Google Scholar 

  96. Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen oxides mediate neuronal cell death. Brain Res 1992: 587: 250–6.

    CAS  PubMed  Google Scholar 

  97. Chao CC, Hu S, Molitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992;149: 2736–41.

    CAS  PubMed  Google Scholar 

  98. Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009;4: 47.

    PubMed  Google Scholar 

  99. McCoy MK, Tansey MG. TNF signaling inhibition in the CNS: implications for normal brain function and neurodegenerative disease. J Neuroinflammation 2008;5: 45.

    PubMed  Google Scholar 

  100. Mogi M, Harada M, Riederer P, Narabayashi H, Fujita K, Nagatsu T. Tumor necrosis factor-alpha (TNF-alpha) increases both in the brain and in the cerebrospinal fluid from Parkinsonian patients. Neurosci Lett 1994;165: 208–10.

    CAS  PubMed  Google Scholar 

  101. Blum-Degen D, Muller T, Kuhn W, Gerlach M, Przuntek H, Riederer P. Interleukin-1 beta and interleukin-6 are elevated in the cerebrospinal fluid of Alzheimer’s and de novo Parkinson’s disease patients. Neurosci Lett 1995;202: 17–20.

    CAS  PubMed  Google Scholar 

  102. Muller T, Blum-Degen D, Przuntek H, Kuhn W. Interleukin-6 levels in cerebrospinal fluid inversely correlate to severity of Parkinson’s disease. Acta Neurol Scand 1998;98: 142–4.

    CAS  PubMed  Google Scholar 

  103. Nagatsu T, Mogi M, Ichinose H, Togari A. Changes in cytokines and neurotrophins in Parkinson’s disease. J Neural Transm Suppl 2000: 60: 277–90.

    PubMed  Google Scholar 

  104. Nagatsu T, Mogi M, Ichinose H, Togari A. Cytokines in Parkinson’s disease. J Neural Transm Suppl 2000: 58: 143–51.

    PubMed  Google Scholar 

  105. Knott C, Stern G, Wilkin GP. Inflammatory regulators in Parkinson’s disease: iNOS, lipocortin-1, and cyclooxygenases-1 and -2. Mol Cell Neurosci 2000;16: 724–39.

    CAS  PubMed  Google Scholar 

  106. Sriram K, O’Callaghan JP. Divergent roles for tumor necrosis factor-alpha in the brain. J Neuroimmune Pharmacol 2007;2: 140–53.

    PubMed  Google Scholar 

  107. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster ML O’Callaghan JP. Deficiency of TNF receptors suppresses microglial activation and alters the susceptibility of brain regions to MPTP-induced neurotoxicity: role of TNF-alpha. Faseb J 2006;20: 670–82.

    CAS  PubMed  Google Scholar 

  108. Sriram K, Matheson JM, Benkovic SA, Miller DB, Luster MI, O’Callaghan JP. Mice deficient in TNF receptors are protected against dopaminergic neurotoxicity: implications for Parkinson’s disease. Faseb J 2002;16: 1474–6.

    CAS  PubMed  Google Scholar 

  109. De Lella Ezcurra AL, Chertoff M, Ferrari C, Graciarena M, Pitossi F. Chronic expression of low levels of tumor necrosis factor-alpha in the substantia nigra elicits progressive neurode-generation, delayed motor symptoms and microglia/macrophage activation. Neurobiol Dis;37:630–40.

  110. Lee JK, Tran T, Tansey MG. Neuroinflammation in Parkinson’s disease. J Neuroimmune Pharmacol 2009;4: 419–29.

    PubMed  Google Scholar 

  111. Nimmo AJ, Vink R. Recent patents in CNS drug discovery: the management of inflammation in the central nervous system. Recent Pat CNS Drug Discov 2009;4: 86–95.

    CAS  PubMed  Google Scholar 

  112. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol 2009;8: 382–97.

    CAS  PubMed  Google Scholar 

  113. Tansey MG, Goldberg MS. Neuroinflammation in Parkinson’s disease: its role in neuronal death and implications for therapeutic intervention. Neurobiol Dis;37:510–8.

  114. Lee JK, McCoy MK, Harms AS, Ruhn KA, Gold SJ, Tansey MG. Regulator of G-protein signaling 10 promotes dopaminergic neuron survival via regulation of the microglial inflammatory response. J Neurosci 2008;28: 8517–28.

    CAS  PubMed  Google Scholar 

  115. Langsten JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219: 979–80.

    Google Scholar 

  116. Jackson-Lewis V, Przedborski S. Protocol for the MPTP mouse model of Parkinson’s disease. Nat Protoc 2007;2: 141–51.

    CAS  PubMed  Google Scholar 

  117. Czlonkowska A, Kohutnicka M, Kurkowska-Jastrzebska I, Czlonkowski A. Microglial reaction in MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) induced Parkinson’s disease mice model. Neurodegeneration 1996;5: 137–43.

    CAS  PubMed  Google Scholar 

  118. Kurkowska-Jastrzebska I, Wronska A, Kohutnicka M, Czlonkowski A, Czlonkowska A. The inflammatory reaction following 1-methyl-4-phenyl-1,2,3, 6-tetrahydropyridine intoxication in mouse. Exp Neurol 1999;156: 50–61.

    CAS  PubMed  Google Scholar 

  119. Hurley SD, O’Banion MK, Song DD, Arana FS, Olschowka JA, Haber SN. Microglial response is poorly correlated with neurodegeneration following chronic, low-dose MPTP administration in monkeys. Exp Neurol 2003;184: 659–68.

    CAS  PubMed  Google Scholar 

  120. Barcia C, Sanchez Bahillo A, Fernandez-Villalba E, et al. Evidence of active microglia in substantia nigra pars compacta of Parkinsonian monkeys 1 year after MPTP exposure. Glia 2004;46: 402–9.

    PubMed  Google Scholar 

  121. Cicchetti F, Brownell AL, Williams K, Chen YI, Livni E, Isacson O. Neuroinflammation of the nigrostriatal pathway during progressive 6-OHDA dopamine degeneration in rats monitored by immunohistochemistry and PET imaging. Eur J Neurosci 2002;15: 991–8.

    CAS  PubMed  Google Scholar 

  122. Langsten JW, Forno LS, Tetrud J, Reeves AG, Kaplan JA, Karluk D. Evidence of active nerve cell degeneration in the substantia nigra of humans years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999;46: 598–605.

    Google Scholar 

  123. Hunot S, Brugg B, Ricard D, et al. Nuclear translocation of NF-kappaB is increased in dopaminergic neurons of patients with Parkinson disease. Proc Natl Acad Sci U S A 1997;94: 7531–6.

    CAS  PubMed  Google Scholar 

  124. Ouchi Y, Yagi S, Yokokura M, Sakamoto M. Neuroinflammation in the living brain of Parkinson’s disease. Parkinsonism Relat Disord 2009;15(suppl 3): S200–4.

    PubMed  Google Scholar 

  125. Ouchi Y, Yoshikawa E, Sekine Y, et al. Microglial activation and dopamine terminal loss in early Parkinson’s disease. Ann Neurol 2005;57: 168–75.

    CAS  PubMed  Google Scholar 

  126. Gao HM, Liu B, Hong JS. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 2003;23: 6181–7.

    CAS  PubMed  Google Scholar 

  127. Block ML, Wu X, Pei Z, et al. Nanometer size diesel exhaust particles are selectively toxic to dopaminergic neurons: the role of microglia, phagocytosis, and NADPH oxidase. Faseb J 2004;18: 1618–20.

    CAS  PubMed  Google Scholar 

  128. Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS. Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 2002;83: 973–83.

    CAS  PubMed  Google Scholar 

  129. Gao HM, Jiang J, Wilson B, Zhang W, Hong JS, Liu B. Microglial activation-mediated delayed and progressive degeneration of rat nigral dopaminergic neurons: relevance to Parkinson’s disease. J Neurochem 2002;81: 1285–97.

    CAS  PubMed  Google Scholar 

  130. Qin L, Liu Y, Wang T, et al. NADPH oxidase mediates lipopolysaccharide-induced neurotoxicity and proinflammatory gene expression in activated microglia. J Biol Chem 2004;279: 1415–21.

    CAS  PubMed  Google Scholar 

  131. Paulsen CE, Carroll KS. Orchestrating redox signaling networks through regulatory cysteine switches. ACS Chem Biol;5:47-62.

  132. Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med;48:749–62.

  133. Babior BM. Phagocytes and oxidative stress. Am J Med 2000;109: 33–44.

    CAS  PubMed  Google Scholar 

  134. Nam HJ, Park YY, Yoon G, Cho H, Lee JH. Co-treatment with hepatocyte growth factor and TGF-b1 enhances migration of HaCaT cells through NADPH oxidase-dependent ROS generation. Exp Mol Med 2010;30: 270–279.

    Google Scholar 

  135. Sun HN, Kim SU, Lee MS, et al. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase-dependent activation of phosphoinositide 3-kinase and p38 mitogen-activated protein kinase signal pathways is required for lipopolysaccharide-induced microglial phagocytosis. Biol Pharm Bull 2008;31: 1711–5.

    CAS  PubMed  Google Scholar 

  136. Roy A, Jana A, Yatish K, et al. Reactive oxygen species upregulate CD11b in microglia via nitric oxide: Implications for neurodegenerative diseases. Free Radic Biol Med 2008;45: 686–99.

    CAS  PubMed  Google Scholar 

  137. Wu DC, Teismann P, Tieu K, et al. NADPH oxidase mediates oxidative stress in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. Proc Natl Acad Sci U S A 2003;100: 6145–50.

    CAS  PubMed  Google Scholar 

  138. Block ML. NADPH oxidase as a therapeutic target in Alzheimer’s disease. BMC Neurosci 2008;9(suppl 2): S8.

    PubMed  Google Scholar 

  139. Wu XF, Block ML, Zhang W, et al. The role of microglia in paraquat-induced dopaminergic neurotoxicity. Antioxid Redox Signal 2005;7: 654–61.

    CAS  PubMed  Google Scholar 

  140. Gao HM, Liu B, Zhang W, Hong JS. Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson’s disease. FASEB J 2003;17: 1954–1956.

    CAS  PubMed  Google Scholar 

  141. Won SY, Choi SH, Jin BK. Prothrombin kringle-2-induced oxidative stress contributes to the death of cortical neurons in vivo and in vitro: role of microglial NADPH oxidase. J Neuroimmunol 2009;214: 83–92.

    CAS  PubMed  Google Scholar 

  142. Qian L, Hu X, Zhang D, et al. beta2 Adrenergic receptor activation induces microglial NADPH oxidase activation and dopaminergic neurotoxicity through an ERK-dependent/protein kinase A-independent pathway. Glia 2009;57: 1600–9.

    PubMed  Google Scholar 

  143. Rodriguez-Pallares J, Rey P, Parga JA, Munoz A, Guerra MJ, Labandeira-Garcia JL. Brain angiotensin enhances dopaminergic cell death via microglial activation and NADPH-derived ROS. Neurobiol Dis 2008;31: 58–73.

    CAS  PubMed  Google Scholar 

  144. Hur J, Lee P, Kim MJ, Kim Y, Cho YW. Ischemia-activated microglia induces neuronal injury via activation of gp91phox NADPH oxidase. Biochem Biophys Res Commun;391:1526–30.

  145. Green SP, Cairns B, Rae J, et al. Induction of gp91-phox, a component of the phagocyte NADPH oxidase, in microglial cells during central nervous system inflammation. J Cereb Blood Flow Metab 2001;21: 374–84.

    CAS  PubMed  Google Scholar 

  146. Wang T, Liu B, Qin L, Wilson B, Hong JS. Protective effect of the SOD/catalase mimetic MnTMPyP on inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuronal-glial cultures. J Neuroimmunol 2004;147: 68–72.

    CAS  PubMed  Google Scholar 

  147. Li Y, Trush MA. Diphenyleneiodonium, an NAD(P)H oxidase inhibitor, also potently inhibits mitochondrial reactive oxygen species production. Biochem Biophys Res Commun 1998;253: 295–9.

    CAS  PubMed  Google Scholar 

  148. Block ML, Li G, Qin L, et al. Potent regulation of microglia-derived oxidative stress and dopaminergic neuron survival: substance P vs. dynorphin. Faseb J 2006;20: 251–8.

    CAS  PubMed  Google Scholar 

  149. Konishi H, Tanaka M, Takemura Y, et al. Activation of protein kinase C by tyrosine phosphorylation in response to H2O2. Proc Natl Acad Sci U S A 1997;94: 11233–7.

    CAS  PubMed  Google Scholar 

  150. Guyton KZ, Gorospe M, Kensler TW, Holbrook NJ. Mitogenactivated protein kinase (MAPK) activation by butylated hydroxytoluene hydroperoxide: implications for cellular survival and tumor promotion. Cancer Res 1996;56: 3480–5.

    CAS  PubMed  Google Scholar 

  151. Schreck R, Rieber P, Baeuerle PA. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. Embo J 1991;10: 2247–58.

    CAS  PubMed  Google Scholar 

  152. Forman HJ, Torres M. Reactive oxygen species and cell signaling: respiratory burst in macrophage signaling. Am J Respir Crit Care Med 2002;166: S4–8.

    PubMed  Google Scholar 

  153. Wang T, Qin L, Liu B, et al. Role of reactive oxygen species in LPS-induced production of prostaglandin E2 in microglia. J Neurochem 2004;88: 939–47.

    CAS  PubMed  Google Scholar 

  154. Min KJ, Pyo HK, Yang MS, Ji KA, Jou I, Joe EH. Gangliosides activate microglia via protein kinase C and NADPH oxidase. Glia 2004;48: 197–206.

    PubMed  Google Scholar 

  155. Pawate S, Shen Q, Fan F, Bhat NR. Redox regulation of glial inflammatory response to lipopolysaccharide and interferon-gamma. J Neurosci Res 2004;77: 540–51.

    CAS  PubMed  Google Scholar 

  156. Qin L, Wu X, Block ML, et al. Systemic LPS causes chronic neuroinflammation and progressive neurodegeneration. Glia 2007;55: 453–62.

    PubMed  Google Scholar 

  157. Gao HK, Yin Z, Zhou N, Feng XY, Gao F, Wang HC. Glycogen synthase kinase 3 inhibition protects the heart from acute ischemia-reperfusion injury via inhibition of inflammation and apoptosis. J Cardiovasc Pharmacol 2008;52: 286–92.

    CAS  PubMed  Google Scholar 

  158. Huh Y, Jung JW, Park C, et al. Microglial activation and tyrosine hydroxylase immunoreactivity in the substantia nigral region following transient focal ischemia in rats. Neurosci Lett 2003;349: 63–7.

    CAS  PubMed  Google Scholar 

  159. McGeer PL, Schwab C, Parent A, Doudet D. Presence of reactive microglia in monkey substantia nigra years after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine administration. Ann Neurol 2003;54: 599–604.

    CAS  PubMed  Google Scholar 

  160. Przedborski S, Tieu K, Perier C, Vila M. MPTP as a mitochondrial neurotoxic model of Parkinson’s disease. J Bioenerg Biomembr 2004;36: 375–9.

    CAS  PubMed  Google Scholar 

  161. Wu DC, Jackson-Lewis V, Vila M, et al. Blockade of microglial activation is neuroprotective in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson disease. J Neurosci 2002;22: 1763–71.

    CAS  PubMed  Google Scholar 

  162. Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med 1999;5: 1403–9.

    CAS  PubMed  Google Scholar 

  163. Zhang W, Wang T, Qin L, et al. Neuroprotective effect of dextromethorphan in the MPTP Parkinson’s disease model: role of NADPH oxidase. Faseb J 2004;18: 589–91.

    CAS  PubMed  Google Scholar 

  164. Feng ZH, Wang TG, Li DD, et al. Cyclooxygenase-2-deficient mice are resistant to 1-methyl-4-phenyl1, 2, 3, 6-tetrahydropyridine-induced damage of dopaminergic neurons in the substantia nigra. Neurosci Lett 2002;329: 354–8.

    CAS  PubMed  Google Scholar 

  165. Teismann P, Vila M, Choi DK, et al. COX-2 and neurodegeneration in Parkinson’s disease. Ann N Y Acad Sci 2003;991: 272–7.

    CAS  PubMed  Google Scholar 

  166. Levesque S, Wilson B, Gregoria V, et al. Reactive Microgliosis: Extracellular μ Calpain and Microglia-mediated Dopaminergic Neurotoxicity. Brain 2010;133: 808–821.

    PubMed  Google Scholar 

  167. Kim YS, Choi DH, Block ML, et al. A pivotal role of matrix metalloproteinase-3 activity in dopaminergic neuronal degeneration via microglial activation. Faseb J 2007;21: 179–87.

    CAS  PubMed  Google Scholar 

  168. Zecca L, Zucca FA, Wilms H, Sulzer D. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics. Trends Neurosci 2003;26: 578–80.

    CAS  PubMed  Google Scholar 

  169. Ling Z, Gayle DA, Ma SY, et al. In utero bacterial endotoxin exposure causes loss of tyrosine hydroxylase neurons in the postnatal rat midbrain. Mov Disord 2002;17: 116–24.

    PubMed  Google Scholar 

  170. Ling Z, Zhu Y, Tong CW, Snyder JA, Lipton JW, Carvey PM. Progressive dopamine neuron loss following supra-nigral lipopolysaccharide (LPS) infusion into rats exposed to LPS prenatally. Exp Neurol 2006.

  171. Carvey PM, Chang Q, Lipton JW, Ling Z. Prenatal exposure to the bacteriotoxin lipopolysaccharide leads to long-term losses of dopamine neurons in offspring: a potential, new model of Parkinson’s disease. Front Biosci 2003;8: s826–37.

    CAS  PubMed  Google Scholar 

  172. Gayle DA, Ling Z, Tong C, Landers T, Lipton JW, Carvey PM. Lipopolysaccharide (LPS)-induced dopamine cell loss in culture: roles of tumor necrosis factor-alpha, interleukin-1beta, and nitric oxide. Brain Res Dev Brain Res 2002;133: 27–35.

    CAS  PubMed  Google Scholar 

  173. Ling ZD, Chang Q, Lipton JW, Tong CW, Landers TM, Carvey PM. Combined toxicity of prenatal bacterial endotoxin exposure and postnatal 6-hydroxydopamine in the adult rat midbrain. Neuroscience 2004;124: 619–28.

    CAS  PubMed  Google Scholar 

  174. Niehaus I. Lippopolysaccharides induce inflammation-mediated neurodeheneration in the substantia nigra and the cerebral cortex (A case report). AD/PD 6th International Conference, 2003:1–38.

  175. Cunningham C, Campion S, Lunnon K, et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry 2009;65: 304–12.

    CAS  PubMed  Google Scholar 

  176. Lehnardt S, Massillon L, Follett P, et al. Activation of innate immunity in the CNS triggers neurodegeneration through a Toll-like receptor 4-dependent pathway. Proc Natl Acad Sci U S A 2003;100: 8514–9.

    CAS  PubMed  Google Scholar 

  177. Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 2009;23: 309–17.

    CAS  PubMed  Google Scholar 

  178. Godbout JP, Chen J, Abraham J, et al. Exaggerated neuroinflammation and sickness behavior in aged mice following activation of the peripheral innate immune system. Faseb J 2005;19: 1329–31.

    CAS  PubMed  Google Scholar 

  179. Gao HM, Liu B, Zhang W, Hong JS. Synergistic dopaminergic neurotoxicity of MPTP and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson’s disease. Faseb J 2003;17: 1957–9.

    CAS  PubMed  Google Scholar 

  180. Carvey PM, Punati A, Newman MB. Progressive dopamine neuron loss in Parkinson’s disease: the multiple hit hypothesis. Cell Transplant 2006;15: 239–50.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Sanger Hall, Room 9-048, 1101 E. Marshall St., Box 980709, 23298-0709, Richmond, VA

    Melinda E. Lull & Michelle L. Block

Authors
  1. Melinda E. Lull
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Michelle L. Block
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Michelle L. Block.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lull, M.E., Block, M.L. Microglial activation and chronic neurodegeneration. Neurotherapeutics 7, 354–365 (2010). https://doi.org/10.1016/j.nurt.2010.05.014

Download citation

  • Issue Date: October 2010

  • DOI: https://doi.org/10.1016/j.nurt.2010.05.014

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Key Words

  • Microglia
  • inflammation-mediated neurodegeneration
  • oxidative stress
  • chronic neurotoxicity
  • reactive microgliosis
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.