, Volume 6, Issue 1, pp 108–127 | Cite as

Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system

Review Article


The growth factor erythropoietin (EPO) and erythropoietin receptors (EPOR) are expressed in the nervous system. Neuronal expression of EPO and EPOR peaks during brain development and is upregulated in the adult brain after injury. Peripherally administered EPO, and at least some of its variants, cross the blood-brain barrier, stimulate neurogenesis, neuronal differentiation, and activate brain neurotrophic, anti-apoptotic, anti-oxidant and anti-inflammatory signaling. These mechanisms underlie their tissue protective effects in nervous system disorders. As the tissue protective functions of EPO can be separated from its stimulatory action on hematopoiesis, novel EPO derivatives and mimetics, such as asialo-EPO and carbamoylated EPO have been developed. While the therapeutic potential of the novel EPO derivatives continues to be characterized in preclinical studies, the experimental findings in support for the use of recombinant human (rh)EPO in human brain disease have already been translated to clinical studies in acute ischemic stroke, chronic schizophrenia, and chronic progressive multiple sclerosis. In this review article, we assess the studies on EPO and, in particular, on its structural or functional variants in experimental models of nervous system disorders, and we provide a short overview of the completed and ongoing clinical studies testing EPO as neuroprotective/neuroregenerative treatment option in neuropsychiatric disease.

Key Words

Ischemia cognition motor function hematocrit thrombocytes safety 


  1. 1.
    Jelkmann W. Developments in the therapeutic use of erythropoiesis stimulating agents. Br J Haematol 2008;141: 287–297.PubMedCrossRefGoogle Scholar
  2. 2.
    Bemaudin M, Marti HH, Roussel S, et al. A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 1999;19:643–651.CrossRefGoogle Scholar
  3. 3.
    Sadamoto Y, Igase K, Sakanaka M, et al. Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 1998;253:26–32.PubMedCrossRefGoogle Scholar
  4. 4.
    Sakanaka M, Wen TC, Matsuda S, et al. In vivo evidence that erythropoietin protects neurons from ischemic damage. Proc Natl Acad Sci U S A 1998;95:4635–4640.PubMedCrossRefGoogle Scholar
  5. 5.
    Lewczuk P, Hasselblatt M, Kamrowski-Kruck H, et al. Survival of hippocampal neurons in culture upon hypoxia: effect of erythropoietin. Neuroreport 2000;11:3485–3488.PubMedCrossRefGoogle Scholar
  6. 6.
    Sirén AL, Fratelli M, Brines M, et al. Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proc Natl Acad Sci U S A 2001;98:4044–4049.PubMedCrossRefGoogle Scholar
  7. 7.
    Brines M, Cerami A. Emerging biological roles for erythropoietin in the nervous system. Nat Rev Neurosci 2005;6:484–494.PubMedCrossRefGoogle Scholar
  8. 8.
    Arcasoy MO. The non-haematopoietic biological effects of erythropoietin. Br J Haematol 2008;141:14–31.PubMedCrossRefGoogle Scholar
  9. 9.
    Juul SE, Anderson DK, Li Y, Christensen RD. Erythropoietin and erythropoietin receptor in the developing human central nervous system. Pediatr Res 1998;43:40–49.PubMedCrossRefGoogle Scholar
  10. 10.
    Morishita E, Masuda S, Nagao M, Yasuda Y, Sasaki R. Erythropoietin receptor is expressed in rat hippocampal and cerebral cortical neurons, and erythropoietin prevents in vitro glutamate-induced neuronal death. Neuroscience 1997;76:105–116.PubMedCrossRefGoogle Scholar
  11. 11.
    Noguchi CT, Asavaritikrai P, Teng R, Jia Y. Role of erythropoietin in the brain. Crit Rev Oncol Hematol 2007;64:159–171.PubMedCrossRefGoogle Scholar
  12. 12.
    Sairanen T, Karjalainen-Lindsberg ML, Paetau A, Ijas P, Lindsberg PJ. Apoptosis dominant in the periinfarct area of human ischaemic stroke-a possible target of antiapoptotic treatments. Brain 2006;129:189–199.PubMedCrossRefGoogle Scholar
  13. 13.
    Sirén AL, Knerlich F, Poser W, Gleiter CH, Brück W, Ehrenreich H. Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 2001;101:271–276.PubMedGoogle Scholar
  14. 14.
    Marti HH. Erythropoietin and the hypoxic brain. J Exp Biol 2004;207:3233–3242.PubMedCrossRefGoogle Scholar
  15. 15.
    Sasaki R, Masuda S, Nagao M. Pleiotropic functions and tissue-specific expression of erythropoietin. News Physiol Sci 2001;16:110–113.PubMedGoogle Scholar
  16. 16.
    Sharp FR, Bemaudin M. HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 2004;5:437–448.PubMedCrossRefGoogle Scholar
  17. 17.
    Hasselblatt M, Ehrenreich H, Sirén AL. The brain erythropoietin system and its potential for therapeutic exploitation in brain disease. J Neurosurg Anesthesiol 2006;18:132–138.PubMedCrossRefGoogle Scholar
  18. 18.
    Dame C, Bartmann P, Wolber E, Fahnenstich H, Hofmann D, Fandrey J. Erythropoietin gene expression in different areas of the developing human central nervous system. Brain Res Dev Brain Res 2000;125: 69–74.PubMedCrossRefGoogle Scholar
  19. 19.
    Juul SE, Yachnis AT, Rojiani AM, Christensen RD. Immunohistochemical localization of erythropoietin and its receptor in the developing human brain. Pediatr Dev Pathol 1999;2:148–158.PubMedCrossRefGoogle Scholar
  20. 20.
    Knabe W, Knerlich F, Washausen S, et al. Expression patterns of erythropoietin and its receptor in the developing midbrain. Anat Embryol (Berl) 2004;207:503–512.CrossRefGoogle Scholar
  21. 21.
    Juul SE, Stallings SA, Christensen RD. Erythropoietin in the cerebrospinal fluid of neonates who sustained CNS injury. Pediatr Res 1999;46:543–547.PubMedCrossRefGoogle Scholar
  22. 22.
    Koehne P, Hochhaus F, Felderhoff-Mueser U, Ring-Mrozik E, Obladen M, Buhrer C. Vascular endothelial growth factor and erythropoietin concentrations in cerebrospinal fluid of children with hydrocephalus. Childs Nerv Syst 2002;18:137–141.PubMedCrossRefGoogle Scholar
  23. 23.
    Marti HH, Gassmann M, Wenger RH, et al. Detection of erythropoietin in human liquor: intrinsic erythropoietin production in the brain. Kidney Int 1997;51:416–418.PubMedCrossRefGoogle Scholar
  24. 24.
    Springborg JB, Sonne B, Frederiksen HJ, et al. Erythropoietin in the cerebrospinal fluid of patients with aneurysmal subarachnoid haemorrhage originates from the brain. Brain Res 2003;984:143–148.PubMedCrossRefGoogle Scholar
  25. 25.
    Dimagl U, Simon RP, Hallenbeck JM. Ischemic tolerance and endogenous neuroprotection. Trends Neurosci 2003;26:248–254.CrossRefGoogle Scholar
  26. 26.
    Yu X, Shacka JJ, Eells JB, et al. Erythropoietin receptor signalling is required for normal brain development. Development 2002;129:505–516.PubMedGoogle Scholar
  27. 27.
    Ehrenreich H, Degner D, Meller J, et al. Erythropoietin: a candidate compound for neuroprotection in schizophrenia. Mol Psychiatry 2004;9:42–54.PubMedGoogle Scholar
  28. 28.
    Assaraf MI, Diaz Z, Liberman A, et al. Brain erythropoietin receptor expression in Alzheimer disease and mild cognitive impairment. J Neuropathol Exp Neurol 2007;66:389–398.PubMedCrossRefGoogle Scholar
  29. 29.
    Youssoufian H, Longmore G, Neumann D, Yoshimura A, Lodish HF. Structure, function, and activation of the erythropoietin receptor. Blood 1993;81:2223–2236.PubMedGoogle Scholar
  30. 30.
    Byts N, Samoylenko A, Fasshauer T, et al. Essential role for Stat5 in the neurotrophic but not in the neuroprotective effect of erythropoietin. Cell Death Differ 2008;15:783–792.PubMedCrossRefGoogle Scholar
  31. 31.
    Digicaylioglu M, Lipton SA. Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-kappaB signalling cascades. Nature 2001;412:641–647.PubMedCrossRefGoogle Scholar
  32. 32.
    Brines M, Grasso G, Fiordaliso F, et al. Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci U S A 2004;101:14907–14912.PubMedCrossRefGoogle Scholar
  33. 33.
    Leist M, Ghezzi P, Grasso G, et al. Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 2004;305:239–242.PubMedCrossRefGoogle Scholar
  34. 34.
    King VR, Averill SA, Hewazy D, Priestley JV, Torup L, Michael-Titus AT. Erythropoietin and carbamylated erythropoietin are neuroprotective following spinal cord hemisection in the rat. Eur J Neurosci 2007;26:90–100.PubMedCrossRefGoogle Scholar
  35. 35.
    Um M, Gross AW, Lodish HF. A “classical” homodimeric erythropoietin receptor is essential for the antiapoptotic effects of erythropoietin on differentiated neuroblastoma SH-SY5Y and pheochromocytoma PC-12 cells. Cell Signal 2007;19:634–645.PubMedCrossRefGoogle Scholar
  36. 36.
    Tsai PT, Ohab JJ, Kertesz N, et al. A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 2006;26:1269–1274.PubMedCrossRefGoogle Scholar
  37. 37.
    Chen ZY, Asavaritikrai P, Prchal JT, Noguchi CT. Endogenous erythropoietin signaling is required for normal neural progenitor cell proliferation. J Biol Chem 2007;282:25875–25883.PubMedCrossRefGoogle Scholar
  38. 38.
    Wang L, Zhang ZG, Gregg SR, et al. The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells. J Biol Chem 2007;282:32462–32470.PubMedCrossRefGoogle Scholar
  39. 39.
    Mikhail A, Covic A, Goldsmith D. Stimulating erythropoiesis: future perspectives. Kidney Blood Press Res 2008;31:234–246.PubMedCrossRefGoogle Scholar
  40. 40.
    Masuda S, Nagao M, Takahata K, et al. Functional erythropoietin receptor of the cells with neural characteristics. Comparison with receptor properties of erythroid cells. J Biol Chem 1993;268:11208–11216.PubMedGoogle Scholar
  41. 41.
    Brines M, Patel NS, Villa P, et al. Nonerythropoietic, tissue-protective peptides derived from the tertiary structure of erythropoietin. Proc Natl Acad Sci U S A 2008;105:10925–10930.PubMedCrossRefGoogle Scholar
  42. 42.
    Campana WM, Misasi R, O’Brien JS. Identification of a neurotrophic sequence in erythropoietin. Int J Mol Med 1998;1:235–241.PubMedGoogle Scholar
  43. 43.
    Erbayraktar S, Grasso G, Sfacteria A, et al. Asialoerythropoietin is a nonerythropoietic cytokine with broad neuroprotective activity in vivo. Proc Natl Acad Sci U S A 2003;100:6741–6746.PubMedCrossRefGoogle Scholar
  44. 44.
    Villa P, van Beek J, Larsen AK, et al. Reduced functional deficits, neuroinflammation, and secondary tissue damage after treatment of stroke by nonerythropoietic erythropoietin derivatives. J Cereb Blood Flow Metab 2007;27: 552–563.PubMedCrossRefGoogle Scholar
  45. 45.
    Kirkeby A, Torup L, Bochsen L, et al. High-dose erythropoietin alters platelet reactivity and bleeding time in rodents in contrast to the neuroprotective variant carbamyl-erythropoietin (CEPO). Thromb Haemost 2008;99:720–728.PubMedGoogle Scholar
  46. 46.
    Egric JC, Dwyer E, Browne JK, Hitz A, Lykos MA. Darbepoetin alfa has a longer circulating half-life and greater in vivo potency than recombinant human erythropoietin. Exp Hematol 2003;31:290–299.CrossRefGoogle Scholar
  47. 47.
    Fan Q, Leuther KK, Holmes CP, et al. Preclinical evaluation of Hematide, a novel erythropoiesis stimulating agent, for the treatment of anemia. Exp Hematol 2006;34:1303–1311.PubMedCrossRefGoogle Scholar
  48. 48.
    Kawakami M, Iwasaki S, Sato K, Takahashi M. Erythropoietin inhibits calcium-induced neurotransmitter release from clonal neuronal cells. Biochem Biophys Res Commun 2000;279:293–297.PubMedCrossRefGoogle Scholar
  49. 49.
    Kawakami M, Sekiguchi M, Sato K, Kozaki S, Takahashi M. Erythropoietin receptor-mediated inhibition of exocytotic glutamate release confers neuroprotection during chemical ischemia. J Biol Chem 2001;276: 39469–39475.PubMedCrossRefGoogle Scholar
  50. 50.
    Wrighton NC, Farrell FX, Chang R, et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 1996;273:458–464.PubMedCrossRefGoogle Scholar
  51. 51.
    Nangaku M, Izuhara Y, Takizawa S, et al. A novel class of prolyl hydroxylase inhibitors induces angiogenesis and exerts organ protection against ischemia. Arterioscler Thromb Vasc Biol 2007;27:2548–2554.PubMedCrossRefGoogle Scholar
  52. 52.
    Puchowicz MA, Zechel JL, Valerio J, et al. Neuroprotection in diet-induced ketotic rat brain after focal ischemia. J Cereb Blood Flow Metab 2008;28:1907–1916.PubMedCrossRefGoogle Scholar
  53. 53.
    Siddiq A, Ayoub IA, Chavez JC, et al. Hypoxia-inducible factor prolyl 4-hydroxylase inhibition. A target for neuroprotection in the central nervous system. J Biol Chem 2005;280:41732–41743.PubMedCrossRefGoogle Scholar
  54. 54.
    Suzuki M, Suzuki M, Kitamura Y, et al. Beta-hydroxybutyrate, a cerebral function improving agent, protects rat brain against ischemic damage caused by permanent and transient focal cerebral ischemia. Jpn J Pharmacol 2002;89:36–43.PubMedCrossRefGoogle Scholar
  55. 55.
    Belayev L, Khoutorova L, Zhao W, et al. Neuroprotective effect of darbepoetin alfa, a novel recombinant erythropoietic protein, in focal cerebral ischemia in rats. Stroke 2005;36:1071–1076.PubMedCrossRefGoogle Scholar
  56. 56.
    Villa P, Bigini P, Mennini T, et al. Erythropoietin selectively attenuates cytokine production and inflammation in cerebral ischemia by targeting neuronal apoptosis. J Exp Med 2003;198:971–975.PubMedCrossRefGoogle Scholar
  57. 57.
    Wang L, Zhang Z, Wang Y, Zhang R, Chopp M. Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 2004;35:1732–1737.PubMedCrossRefGoogle Scholar
  58. 58.
    Wang Y, Zhang ZG, Rhodes K, et al. Post-ischemic treatment with erythropoietin or carbamylated erythropoietin reduces infarction and improves neurological outcome in a rat model of focal cerebral ischemia. Br J Pharmacol 2007;151: 1377–1384.PubMedCrossRefGoogle Scholar
  59. 59.
    Yu YP, Xu QQ, Zhang Q, Zhang WP, Zhang LH, Wei EQ. Intranasal recombinant human erythropoietin protects rats against focal cerebral ischemia. Neurosci Lett 2005;387:5–10.PubMedCrossRefGoogle Scholar
  60. 60.
    Chang YS, Mu D, Wendland M, et al. Erythropoietin Improves Functional and Histological Outcome in Neonatal Stroke. Pediatr Res 2005;58:106–111.PubMedCrossRefGoogle Scholar
  61. 61.
    Ehrenreich H, Aust C, Krampe H, et al. Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis 2004;19:195–206.PubMedCrossRefGoogle Scholar
  62. 62.
    Gonzalez FF, McQuillen P, Mu D, et al. Erythropoietin enhances long-term neuroprotection and neurogenesis in neonatal stroke. Dev Neurosci 2007;29:321–330.PubMedCrossRefGoogle Scholar
  63. 63.
    Kumral A, Uysal N, Tugyan K, et al. Erythropoietin improves long-term spatial memory deficits and brain injury following neonatal hypoxia-ischemia in rats. Behav Brain Res 2004;153:77–86.PubMedCrossRefGoogle Scholar
  64. 64.
    Spandou E, Papadopoulou Z, Soubasi V, et al. Erythropoietin prevents long-term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats. Brain Res 2005;1045:22–30.PubMedGoogle Scholar
  65. 65.
    Cerami A. Beyond erythropoiesis: novel applications for recombinant human erythropoietin. Semin Hematol 2001;38: 33–39.PubMedCrossRefGoogle Scholar
  66. 66.
    Sasaki R, Masuda S, Nagao M. Erythropoietin: multiple physiological functions and regulation of biosynthesis. Biosci Biotechnol Biochem 2000;64:1775–1793.PubMedCrossRefGoogle Scholar
  67. 67.
    Brines ML, Ghezzi P, Keenan S, et al. Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 2000;97:10526–10531.PubMedCrossRefGoogle Scholar
  68. 68.
    Banks WA, Jumbe NL, Farrell CL, Niehoff ML, Heatherington AC. Passage of erythropoietic agents across the blood-brain barrier: a comparison of human and murine erythropoietin and the analog darbepoetin alfa. Eur J Pharmacol 2004;505:93–101.PubMedCrossRefGoogle Scholar
  69. 69.
    Ehrenreich H, Hasselblatt M, Dembowski C, et al. Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 2002;8:495–505.PubMedGoogle Scholar
  70. 70.
    Statler PA, McPherson RJ, Bauer LA, Kellert BA, Juul SE. Pharmacokinetics of high-dose recombinant erythropoietin in plasma and brain of neonatal rats. Pediatr Res 2007;61:671–675.PubMedGoogle Scholar
  71. 71.
    Martinez-Estrada OM, Rodriguez-Millan E, Gonzalez-De Vicente E, Reina M, Vilaro S, Fabre M. Erythropoietin protects the in vitro blood-brain barrier against VEGF-induced permeability. Eur J Neurosci 2003;18:2538–2544.PubMedCrossRefGoogle Scholar
  72. 72.
    Xenocostas A, Cheung WK, Fan-ell F, et al. The pharmacokinetics of erythropoietin in the cerebrospinal fluid after intravenous administration of recombinant human erythropoietin. Eur J Clin Pharmacol 2005;61:189–195.PubMedCrossRefGoogle Scholar
  73. 73.
    Lapchak PA, Kirkeby AG, Zivin JA, Sager TN. Therapeutic window for nonerythropoietic carbamylated-erythropoietin to improve motor function following multiple infarct ischemic strokes in New Zealand white rabbits. Brain Res 2008;1238:208–214.PubMedCrossRefGoogle Scholar
  74. 74.
    Casadevall N. Pure red cell aplasia and anti-erythropoietin antibodies in patients treated with epoetin. Nephrol Dial Transplant 2003;18(suppl 8):viii37–41.PubMedGoogle Scholar
  75. 75.
    Pollock C, Johnson DW, Horl WH, et al. Pure red cell aplasia induced by erythropoiesis-stimulating agents. Clin J Am Soc Nephrol 2008;3:193–199.PubMedCrossRefGoogle Scholar
  76. 76.
    Chen G, Shi JX, Hang CH, Xie W, Liu J, Liu X. Inhibitory effect on cerebral inflammatory agents that accompany traumatic brain injury in a rat model: a potential neuroprotective mechanism of recombinant human erythropoietin (rhEPO). Neurosci Lett 2007;425:177–182.PubMedCrossRefGoogle Scholar
  77. 77.
    Cherian L, Goodman JC, Robertson C. Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats. J Pharmacol Exp Ther 2007;322:789–794.PubMedCrossRefGoogle Scholar
  78. 78.
    Grasso G, Sfacteria A, Meli F, Fodale V, Buemi M, Iacopino DG. Neuroprotection by erythropoietin administration after experimental traumatic brain injury. Brain Res 2007;1182:99–105.PubMedCrossRefGoogle Scholar
  79. 79.
    Liao ZB, Zhi XG, Shi QH, He ZH. Recombinant human erythropoietin administration protects cortical neurons from traumatic brain injury in rats. Eur J Neurol 2008;15:140–149.PubMedCrossRefGoogle Scholar
  80. 80.
    Mahmood A, Lu D, Qu C, et al. Treatment of traumatic brain injury in rats with erythropoietin and carbamylated erythropoietin. J Neurosurg 2007;107:392–397.PubMedCrossRefGoogle Scholar
  81. 81.
    Mala H, Rodriguez Castro M, Dall Jorgensen K, Mogensen J. Effects of erythropoietin on posttraumatic place learning in fimbria-fomix transected rats after a 30-day postoperative pause. J Neurotrauma 2007;24:1647–1657.PubMedCrossRefGoogle Scholar
  82. 82.
    Ozturk E, Demirbilek S, Kadir But A, et al. Antioxidant properties of propofol and erythropoietin after closed head injury in rats. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:922–927.PubMedCrossRefGoogle Scholar
  83. 83.
    Verdonck O, Lahrech H, Francony G, et al. Erythropoietin protects from post-traumatic edema in the rat brain. J Cereb Blood Flow Metab 2007;27:1369–1376.PubMedCrossRefGoogle Scholar
  84. 84.
    Yatsiv I, Grigoriadis N, Simeonidou C, et al. Erythropoietin is neuroprotective, improves functional recovery, and reduces neuronal apoptosis and inflammation in a rodent model of experimental closed head injury. Faseb J 2005;19: 1701–1703.PubMedGoogle Scholar
  85. 85.
    Hori SE, Powell KJ, Robertson GS. Darbepoetin alfa (Aranesp) improves recognition memory in adult rats that have sustained bilateral ventral hippocampal lesions as neonates or young adults. Neuroscience 2007;144:1–7.PubMedCrossRefGoogle Scholar
  86. 86.
    Sirén AL, Radyushkin K, Boretius S, et al. Global brain atrophy after unilateral parietal lesion and its prevention by erythropoietin. Brain 2006;129:480–489.PubMedCrossRefGoogle Scholar
  87. 87.
    Celik M, Gokmen N, Erbayraktar S, et al. Erythropoietin prevents motor neuron apoptosis and neurologic disability in experimental spinal cord ischemic injury. Proc Natl Acad Sci U S A 2002;99:2258–2263.PubMedCrossRefGoogle Scholar
  88. 88.
    Gorio A, Gokmen N, Erbayraktar S, et al. Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 2002;99:9450–9455.PubMedCrossRefGoogle Scholar
  89. 89.
    Grasso G, Sfacteria A, Erbayraktar S, et al. Amelioration of spinal cord compressive injury by pharmacological preconditioning with erythropoietin and a nonerythropoietic erythropoietin derivative. J Neurosurg Spine 2006;4: 310–318.PubMedCrossRefGoogle Scholar
  90. 90.
    Pinzon A, Marcillo A, Pabon D, Bramlett HM, Bunge MB, Dietrich WD. A re-assessment of erythropoietin as a neuroprotective agent following rat spinal cord compression or contusion injury. Exp Neurol 2008;213:129–136.PubMedCrossRefGoogle Scholar
  91. 91.
    Agnello D, Bigini P, Villa P, et al. Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 2002;952:128–134.PubMedCrossRefGoogle Scholar
  92. 92.
    Diem R, Sattler MB, Merkler D, et al. Combined therapy with methylprednisolone and erythropoietin in a model of multiple sclerosis. Brain 2005;128:375–385.PubMedCrossRefGoogle Scholar
  93. 93.
    Li W, Maeda Y, Yuan RR, Elkabes S, Cook S, Dowling P. Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol 2004;56:767–777.PubMedCrossRefGoogle Scholar
  94. 94.
    Sättler MB, Merkler D, Maier K, et al. Neuroprotective effects and intracellular signaling pathways of erythropoietin in a rat model of multiple sclerosis. Cell Death Differ 2004;11(suppl 2):S181-S192.PubMedCrossRefGoogle Scholar
  95. 95.
    Savino C, Pedotti R, Baggi F, et al. Delayed administration of erythropoietin and its non-erythropoietic derivatives ameliorates chronic murine autoimmune encephalomyelitis. J Neuroimmunol 2006;172:27–37.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhang J, Li Y, Cui Y, et al. Erythropoietin treatment improves neurological functional recovery in EAE mice. Brain Res 2005;1034:34–39.PubMedCrossRefGoogle Scholar
  97. 97.
    Kaiser K, Texier A, Ferrandiz J, et al. Recombinant human erythropoietin prevents the death of mice during cerebral malaria. J Infect Dis 2006;193:987–995.PubMedCrossRefGoogle Scholar
  98. 98.
    Wiese L, Hempel C, Penkowa M, Kirkby N, Kurtzhals JA. Recombinant human erythropoietin increases survival and reduces neuronal apoptosis in a murine model of cerebral malaria. Malar J 2008;7:3.PubMedCrossRefGoogle Scholar
  99. 99.
    Erbayraktar S, de Lanerolle N, de Lotbiniere A, et al. Carbamylated erythropoietin reduces radiosurgically-induced brain injury. Mol Med 2006;12:74–80.PubMedCrossRefGoogle Scholar
  100. 100.
    Casals-Pascual C, Idro R, Gicheru N, et al. High levels of erythropoietin are associated with protection against neurological sequelae in African children with cerebral malaria. Proc Natl Acad Sci U S A 2008;105:2634–2639.PubMedCrossRefGoogle Scholar
  101. 101.
    Grasso G, Meli F, Fodale V, Calapai G, Buemi M, Iacopino DG. Neuroprotective potential of erythropoietin and darbepoetin alfa in an experimental model of sciatic nerve injury. Laboratory investigation. J Neurosurg Spine 2007;7:645–651.PubMedCrossRefGoogle Scholar
  102. 102.
    Campana WM, Li X, Shubayev VI, Angert M, Cai K, Myers RR. Erythropoietin reduces Schwann cell TNF-alpha, Wallerian degeneration and pain-related behaviors after peripheral nerve injury. Eur J Neurosci 2006;23:617–626.PubMedCrossRefGoogle Scholar
  103. 103.
    Keswani SC, Buldanlioglu U, Fischer A, et al. A novel endogenous erythropoietin mediated pathway prevents axonal degeneration. Ann Neurol 2004;56:815–826.PubMedCrossRefGoogle Scholar
  104. 104.
    Keswani SC, Leitz GJ, Hoke A. Erythropoietin is neuroprotective in models of HIV sensory neuropathy. Neurosci Lett 2004;371:102–105.PubMedCrossRefGoogle Scholar
  105. 105.
    Schmidt RE, Green KG, Feng D, et al. Erythropoietin and its carbamylated derivative prevent the development of experimental diabetic autonomic neuropathy in STZ-induced diabetic NOD-SCID mice. Exp Neurol 2008;209:161–170.PubMedCrossRefGoogle Scholar
  106. 106.
    Grimm C, Wenzel A, Groszer M, et al. HIF-1-induced erythropoietin in the hypoxic retina protects against light-induced retinal degeneration. Nat Med 2002;8:718–724.PubMedCrossRefGoogle Scholar
  107. 107.
    Chen J, Connor KM, Aderman CM, Smith LE. Erythropoietin deficiency decreases vascular stability in mice. J Clin Invest 2008;118:526–533.PubMedGoogle Scholar
  108. 108.
    Zhang J, Wu Y, Jin Y, et al. Intravitreal injection of erythropoietin protects both retinal vascular and neuronal cells in early diabetes. Invest Ophthalmol Vis Sci 2008;49:732–742.PubMedCrossRefGoogle Scholar
  109. 109.
    Weishaupt JH, Rohde G, Polking E, Sirén AL, Ehrenreich H, Bahr M. Effect of erythropoietin axotomy-induced apoptosis in rat retinal ganglion cells. Invest Ophthalmol Vis Sci 2004;45:1514–1522.PubMedCrossRefGoogle Scholar
  110. 110.
    Watanabe D, Suzuma K, Matsui S, et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy. N Engl J Med 2005;353:782–792.PubMedCrossRefGoogle Scholar
  111. 111.
    Chong ZZ, Li F, Maiese K. Erythropoietin requires NF-kappaB and its nuclear translocation to prevent early and late apoptotic neuronal injury during beta-amyloid toxicity. Curr Neurovasc Res 2005;2:387–399.PubMedCrossRefGoogle Scholar
  112. 112.
    Genc S, Akhisaroglu M, Kuralay F, Genc K. Erythropoietin restores glutathione peroxidase activity in 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced neurotoxicity in C57BL mice and stimulates murine astroglial glutathione peroxidase production in vitro. Neurosci Lett 2002;321:73–76.PubMedCrossRefGoogle Scholar
  113. 113.
    Genc S, Kuralay F, Genc K, et al. Erythropoietin exerts neuroprotection in l-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated C57/BL mice via increasing nitric oxide production. Neurosci Lett 2001;298: 139–141.PubMedCrossRefGoogle Scholar
  114. 114.
    Grunfeld JF, Barhum Y, Blondheim N, Rabey JM, Melamed E, Offen D. Erythropoietin delays disease onset in an amyotrophic lateral sclerosis model. Exp Neurol 2007;204:260–263.PubMedCrossRefGoogle Scholar
  115. 115.
    Mennini T, De Paola M, Bigini P, et al. Nonhematopoietic erythropoietin derivatives prevent motoneuron degeneration in vitro and in vivo. Mol Med 2006;12:153–160.PubMedCrossRefGoogle Scholar
  116. 116.
    Kanaan NM, Collier TJ, Marchionini DM, McGuire SO, Fleming MF, Sortwell CE. Exogenous erythropoietin provides neuroprotection of grafted dopamine neurons in a rodent model of Parkinson’s disease. Brain Res 2006;1068:221–229.PubMedCrossRefGoogle Scholar
  117. 117.
    Gil JM, Leist M, Popovic N, Brundin P, Petersen A. Asialoerythropoietin is not effective in the R6/2 line of Huntington’s disease mice. BMC Neurosci 2004;5:17.PubMedCrossRefGoogle Scholar
  118. 118.
    Recommendations for standards regarding preclinical neuroprotective and restorative drug development. Stroke 1999;30:2752–2758.Google Scholar
  119. 119.
    Ehrenreich H, Fischer B, Norra C, et al. Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain 2007; 130:2577–2588.PubMedCrossRefGoogle Scholar
  120. 120.
    Fauchere JC, Dame C, Vonthein R, et al. An approach to using recombinant erythropoietin for neuroprotection in very preterm infants. Pediatrics 2008;122:375–382.PubMedCrossRefGoogle Scholar
  121. 121.
    Juul SE, McPherson RJ, Bauer LA, Ledbetter KJ, Gleason CA, Mayock DE. A phase I/II trial of high-dose erythropoietin in extremely low birth weight infants: pharmacokinetics and safety. Pediatrics 2008;122:383–391.PubMedCrossRefGoogle Scholar
  122. 122.
    Springborg JB, Moller C, Gideon P, Jorgensen OS, Juhler M, Olsen NV. Erythropoietin in patients with aneurysmal subarachnoid haemorrhage: a double blind randomised clinical trial. Acta Neurochir (Wien) 2007;149:1089–1101; discussion 1101.CrossRefGoogle Scholar
  123. 123.
    Boesch S, Sturm B, Hering S, Goldenberg H, Poewe W, Scheiber-Mojdehkar B. Friedreich’s ataxia: clinical pilot trial with recombinant human erythropoietin. Ann Neurol 2007;62:521–524.PubMedCrossRefGoogle Scholar
  124. 124.
    Ehrenreich H, Hinze-Selch D, Stawick S, et al. Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Mol Psychiatry 2007;12:206–220.PubMedCrossRefGoogle Scholar
  125. 125.
    Adamcio B, Sargin D, Stradomska A, et al. Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biol 2008;6:37.PubMedCrossRefGoogle Scholar
  126. 126.
    Kwack C, Balakrishnan VS. Managing erythropoietin hyporesponsiveness. Semin Dial 2006;19:146–151.PubMedCrossRefGoogle Scholar
  127. 127.
    Lynch SG, Fonseca T, Levine SM. A multiple course trial of desferrioxamine in chronic progressive multiple sclerosis. Cell Mol Biol (Noisy-le-grand) 2000;46:865–869.Google Scholar
  128. 128.
    Jelkmann W. Erythropoietin: structure, control of production, and function. Physiol Rev 1992;72:449–489.PubMedGoogle Scholar
  129. 129.
    Carlini R, Obialo CI, Rothstein M. Intravenous erythropoietin (rHuEPO) administration increases plasma endothelin and blood pressure in hemodialysis patients. Am J Hypertens 1993;6:103–107.PubMedGoogle Scholar
  130. 130.
    Miyashita K, Tojo A, Kimura K, et al. Blood pressure response to erythropoietin injection in hemodialysis and predialysis patients. Hypertens Res 2004;27:79–84.PubMedCrossRefGoogle Scholar
  131. 131.
    Dronca RS, Steensma DP. VTE and mortality associated with erythropoiesis-stimulating agents in cancer-associated anemia. Nat Clin Pract Oncol 2008;5:504–505.PubMedCrossRefGoogle Scholar
  132. 132.
    Bennett CL, Silver SM, Djulbegovic B, et al. Venous thromboembolism and mortality associated with recombinant erythropoietin and darbepoetin administration for the treatment of cancer-associated anemia. Jama 2008;299:914–924.PubMedCrossRefGoogle Scholar
  133. 133.
    Leyland-Jones B, Semiglazov V, Pawlicki M, et al. Maintaining normal hemoglobin levels with epoetin alfa in mainly nonanemic patients with metastatic breast cancer receiving first-line chemotherapy: a survival study. J Clin Oncol 2005;23:5960–5972.PubMedCrossRefGoogle Scholar
  134. 134.
    Mohyeldin A, Dalgard CL, Lu H, et al. Survival and invasiveness of astrocytomas promoted by erythropoietin. J Neurosurg 2007;106:338–350.PubMedCrossRefGoogle Scholar
  135. 135.
    Hassouna I, Sperling S, Kim E, et al. Erythropoietin augments survival of glioma cells after radiation and temozolomide. Int J Radiat Oncol Biol Phys. 2008;72:927–934.PubMedCrossRefGoogle Scholar

Copyright information

© The American Society for Experimental NeuroTherapeutics, Inc. 2009

Authors and Affiliations

  1. 1.Department of NeurosurgeryUniversity of WürzburgWürzburgGermany
  2. 2.Division of Clinical NeuroscienceMax Planck Institute of Experimental MedicineGöttingenGermany

Personalised recommendations