Dual-target-directed drugs that block monoamine oxidase B and adenosine A2A receptors for Parkinson’s disease

Summary

Inadequacies of the current pharmacotherapies to treat Parkinson’s disease (PD) have prompted efforts to identify novel drug targets. The adenosine A2A receptor is one such target. Antagonists of this receptor (A2A antagonists) are considered promising agents for the symptomatic treatment of PD. Evidence suggests that A2A antagonists may also have neuroprotective properties that may prevent the development of the dyskinesia that often complicates levodopa treatment. Because the therapeutic benefits of A2A antagonists are additive to that of dopamine replacement therapy, it may be possible to reduce the dose of the dopaminergic drugs and therefore the occurrence of side effects. Inhibitors of monoamine oxidase (MAO)-B also are considered useful tools for the treatment of PD. When used in combination with levodopa, inhibitors of MAO-B may enhance the elevation of dopamine levels after levodopa treatment, particularly when used in early stages of the disease when dopamine production may not be so severely compromised. Furthermore, MAO-B inhibitors may also possess neuroprotective properties in part by reducing the damaging effect of dopamine turnover in the brain. These effects of MAO-B inhibitors are especially relevant when considering that the brain shows an age-related increase in MAO-B activity. Based on these observations, dual-target-directed drugs, compounds that inhibit MAO-B and antagonize A2A receptors, may have value in the management of PD. This review summarizes recent efforts to develop such dual-acting drugs using caffeine as the lead compound.

References

  1. 1.

    Allain H, Bentué-Ferrer D, Akwa Y. Disease-modifying drugs and Parkinson’s disease. Prog Neurobiol 2008;84:25–39.

    CAS  PubMed  Google Scholar 

  2. 2.

    Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron 2003;39:889–909.

    CAS  PubMed  Google Scholar 

  3. 3.

    Lew M. Overview of Parkinson’s disease. Pharmacotherapy 2007;27:155S-160S.

    CAS  PubMed  Google Scholar 

  4. 4.

    Voss T, Ravina B. Neuroprotection in Parkinson’s disease: myth or reality? Curr Neurol Neurosci Rep 2008;8:304–309.

    PubMed  Google Scholar 

  5. 5.

    Chen JJ, Swope DM. Pharmacotherapy for Parkinson’s disease. Pharmacotherapy 2007;27:161S-173S.

    CAS  PubMed  Google Scholar 

  6. 6.

    Jankovic J, Stacy M. Medical management of levodopa-associated motor complications in patients with Parkinson’s disease. CNS Drugs 2007;21:677–692.

    CAS  PubMed  Google Scholar 

  7. 7.

    Rezak M. Current pharmacotherapeutic treatment options in Parkinson’s disease. Dis Mon 2007;53:214–222.

    PubMed  Google Scholar 

  8. 8.

    Lees A. Alternatives to levodopa in the initial treatment of early Parkinson’s disease. Drugs Aging 2005;22: 731–740.

    CAS  PubMed  Google Scholar 

  9. 9.

    Fernandez HH, Chen JJ. Monoamine oxidase-B inhibition in the treatment of Parkinson’s disease. Pharmacotherapy 2007;27:174S-185S.

    CAS  PubMed  Google Scholar 

  10. 10.

    Youdim MB, Collins GG, Sandler M, Bevan Jones AB, Pare CM, Nicholson WJ. Human brain monoamine oxidase: multiple forms and selective inhibitors. Nature 1972;236:225–228.

    CAS  PubMed  Google Scholar 

  11. 11.

    Collins GG, Sandler M, Williams ED, Youdim MB. Multiple forms of human brain mitochondrial monoamine oxidase. Nature 1970;225:817–820.

    CAS  PubMed  Google Scholar 

  12. 12.

    Di Monte DA, DeLanney LE, Irwin I, et al. Monoamine oxidase-dependent metabolism of dopamine in the striatum and substantia nigra of L-DOPA-treated monkeys. Brain Res 1996;738:53–59.

    PubMed  Google Scholar 

  13. 13.

    Finberg JP, Wang J, Bankiewicz K, Harvey-White J, Kopin IJ, Goldstein DS. Increased striatal dopamine production from L-DOPA following selective inhibition of monoamine oxidase B by R(+)-N-propargyl-1-aminoindan (rasagiline) in the monkey. J Neural Transm Suppl 1998;52:279–285.

    CAS  PubMed  Google Scholar 

  14. 14.

    Youdim MB, Bakhle YS. Monoamine oxidase: isoforms and inhibitors in Parkinson’s disease and depressive illness. Br J Pharmacol 2006;147:S287-S296.

    CAS  PubMed  Google Scholar 

  15. 15.

    Nicotra A, Pierucci F, Parvez H, Senatori O. Monoamine oxidase expression during development and aging. Neurotoxicology 2004;25:155–165.

    CAS  PubMed  Google Scholar 

  16. 16.

    Fowler JS, Volkow ND, Wang GJ, et al. Age-related increases in brain monoamine oxidase B in living healthy human subjects. Neurobiol Aging 1997;18:431–435.

    CAS  PubMed  Google Scholar 

  17. 17.

    Karolewicz B, Klimek V, Zhu H, et al. Effects of depression, cigarette smoking, and age on monoamine oxidase B in amygdaloid nuclei. Brain Res 2005;1043:57–64.

    CAS  PubMed  Google Scholar 

  18. 18.

    Fowler CJ, Wiberg A, Oreland L, Marcusson J, Winblad B. The effect of age on the activity and molecular properties of human brain monoamine oxidase. J Neural Transm 1980;49:1–20.

    CAS  PubMed  Google Scholar 

  19. 19.

    Xu K, Bastia E, Schwarzschild M. Therapeutic potential of adenosine A2A receptor antagonists in Parkinson’s disease. Pharmacol Ther 2005;105:267–310.

    CAS  PubMed  Google Scholar 

  20. 20.

    Pinna A, Wardas J, Simola N, Morelli M. New therapies for the treatment of Parkinson’s disease: adenosine A2A receptor antagonists. Life Sci 2005;77:3259–3267.

    CAS  PubMed  Google Scholar 

  21. 21.

    Morelli M, Di Paolo T, Wardas J, Calon F, Xiao D, Schwarzschild MA. Role of adenosine A2A receptors in parkinsonian motor impairment and 1-DOPA-induced motor complications. Prog Neurobiol 2007;83: 293–309.

    CAS  PubMed  Google Scholar 

  22. 22.

    Schwarzschild MA, Agnati L, Fuxe K, Chen JF, Morelli M. Targeting adenosine A2A receptors in Parkinson’s disease. Trends Neurosci 2006;29:647–654.

    CAS  PubMed  Google Scholar 

  23. 23.

    Bibbiani F, Oh JD, Petzer JP, et al. A2A antagonist prevents dopamine agonist-induced motor complications in animal models of Parkinson’s disease. Exp Neurol 2003;184:285–94.

    CAS  PubMed  Google Scholar 

  24. 24.

    Jacobson KA, Gallo-Rodriguez C, Melman N, et al. Structure-activity relationships of 8-styrylxanthines as A2-selective adenosine antagonists. J Med Chem 1993;36:1333–1342.

    CAS  PubMed  Google Scholar 

  25. 25.

    Müller CE, Geis U, Hipp J, et al. Synthesis and structure-activity relationships of 3,7-dimethyl-1-propargylxanthine derivatives, A2A-selective adenosine receptor antagonists. J Med Chem 1997;40:4396–4405.

    PubMed  Google Scholar 

  26. 26.

    Chen JF, Steyn S, Staal R, et al. 8-(3-Chlorostyryl) caffeine may attenuate MPTP neurotoxicity through dual actions of monoamine oxidase inhibition and A2A receptor antagonism. J Biol Chem 2002;277:36040–36044.

    CAS  PubMed  Google Scholar 

  27. 27.

    Petzer JP, Steyn S, Castagnoli KP, et al. Inhibition of monoamine oxidase B by selective adenosine A2A receptor antagonists. Bioorg Med Chem 2003;11:1299–1310.

    CAS  PubMed  Google Scholar 

  28. 28.

    Vlok N, Malan SF, Castagnoli N Jr, Bergh JJ, Petzer JP. Inhibition of monoamine oxidase B by analogues of the adenosine A2A receptor antagonist (E)-8-(3-chlorostyryl) caffeine (CSC). Bioorg Med Chem 2006;14: 3512–2351.

    CAS  PubMed  Google Scholar 

  29. 29.

    Fredholm BB, IJzerman AP, Jacobson KA, Klotz KN, Linden J. International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 2001;53:527–552.

    CAS  PubMed  Google Scholar 

  30. 30.

    Ishiwata K, Mishina M, Kimura Y, Oda K, Sasaki T, Ishii K. First visualization of adenosine A2A receptors in the human brain by positron emission tomography with [11C]TMSX. Synapse 2005;55: 133–136.

    CAS  PubMed  Google Scholar 

  31. 31.

    Jarvis MF, Williams M. Direct autoradiographic localization of adenosine A2 receptors in the rat brain using the A2-selective agonist, [3H]CGS 21680. Eur J Pharmacol 1989;168:243–246.

    CAS  PubMed  Google Scholar 

  32. 32.

    Schiffmann SN, Jacobs O, Vanderhaeghen JJ. Striatal restricted adenosine A2 receptor (RDC8) is expressed by enkephalin but not by substance P neurons: an in situ hybridization histochemistry study. J Neurochem 1991;57: 1062–1067.

    CAS  PubMed  Google Scholar 

  33. 33.

    Fink JS, Weaver DR, Rivkees SA, et al. Molecular cloning of the rat A2 adenosine receptor: selective co-expression with D2 dopamine receptors in rat striatum. Brain Res Mol Brain Res 1992;14:186–195.

    CAS  PubMed  Google Scholar 

  34. 34.

    Ferré S, von Euler G, Johansson B, Fredholm BB, Fuxe K. Stimulation of high-affinity adenosine A2 receptors decreases the affinity of dopamine D2 receptors in rat striatal membranes. Proc Natl Acad Sci USA 1991;88:7238–7241.

    PubMed  Google Scholar 

  35. 35.

    Ferré S, O’Connor WT, Fuxe K, Ungerstedt U. The striopallidal neuron: a main locus for adenosine-dopamine interactions in the brain. J Neurosci 1993;13:5402–5406.

    PubMed  Google Scholar 

  36. 36.

    Ferré S, Fredholm BB, Morelli M, Popoli P, Fuxe K. Adenosine-dopamine receptor-receptor interactions as an integrative mechanism in the basal ganglia. Trends Neurosci 1997;20:482–487.

    PubMed  Google Scholar 

  37. 37.

    Kanda T, Jackson MJ, Smith LA, et al. Adenosine A2A antagonist: a novel anti-Parkinsonian agent that does not provoke dyskinesia in parkinsonian monkeys. Ann Neurol 1998;43:507–513.

    CAS  PubMed  Google Scholar 

  38. 38.

    Chen JF, Moratalla R, Impagnatiello F, et al. The role of the D2 dopamine receptor (D2R) in A2A adenosine receptor (A2AR)-mediated behavioral and cellular responses as revealed by A2A and D2 receptor knockout mice. Proc Natl Acad Sci USA 2001;98:1970–1975.

    CAS  PubMed  Google Scholar 

  39. 39.

    Lundblad M, Vaudano E, Cenci MA. Cellular and behavioural effects of the adenosine A2A receptor antagonist KW-6002 in a rat model of 1-DOPA-induced dyskinesia. J Neurochem 2003;84:1398–1410.

    CAS  PubMed  Google Scholar 

  40. 40.

    Fenu S, Pinna A, Ongini E, Morelli M. Adenosine A2A receptor antagonism potentiates L-DOPA-induced turning behaviour and c-fos expression in 6-hydroxydopamine-lesioned rats. Eur J Pharmacol 1997;321:143–147.

    CAS  PubMed  Google Scholar 

  41. 41.

    Jiang H, Jackson-Lewis V, Muthane U, et al. Adenosine receptor antagonists potentiate dopamine receptor agonist-induced rotational behavior in 6-hydroxydopamine-lesioned rats. Brain Res 1993;613:347–351.

    CAS  PubMed  Google Scholar 

  42. 42.

    Grondin R, Bédard PJ, Hadj Tahar A, Grégoire L, Mori A, Kase H. Anti-Parkinsonian effect of a new selective adenosine A2A receptor antagonist in MPTP-treated monkeys. Neurology 1999;52: 1673–1677.

    CAS  PubMed  Google Scholar 

  43. 43.

    Kanda T, Jackson MJ, Smith LA, et al. Combined use of the adenosine A2A antagonist KW-6002 with L-DOPA or with selective D1 or D2 dopamine agonists increases anti-Parkinsonian activity but not dyskinesia in MPTP-treated monkeys. Exp Neurol 2000;162:321–327.

    CAS  PubMed  Google Scholar 

  44. 44.

    Rose S, Jackson MJ, Smith LA, et al. The novel adenosine A2A receptor antagonist ST1535 potentiates the effects of a threshold dose of L-DOPA in MPTP treated common marmosets. Eur J Pharmacol 2006;546:82–87.

    CAS  PubMed  Google Scholar 

  45. 45.

    Popoli P, Reggio R, Pèzzola A, Fuxe K, Ferré S. Adenosine A1 and A2A receptor antagonists stimulate motor activity: evidence for an increased effectiveness in aged rats. Neurosci Lett 1998;251: 201–204.

    CAS  PubMed  Google Scholar 

  46. 46.

    Shimada J, Koike N, Nonaka H, et al. Adenosine A2A antagonists with potent anti-cataleptic activity. Bioorg Med Chem Lett 1997;18:2349–2352.

    Google Scholar 

  47. 47.

    Bara-Jimenez W, Sherzai A, Dimitrova T, et al. Adenosine A2A receptor antagonist treatment of Parkinson’s disease. Neurology 2003;61:293–296.

    CAS  PubMed  Google Scholar 

  48. 48.

    Hauser RA, Hubble JP, Truong DD et al. Randomized trial of the adenosine A2A receptor antagonist istradefylline in advanced PD. Neurology 2003;61:297–303.

    CAS  PubMed  Google Scholar 

  49. 49.

    Chase TN, Bibbiani F, Bara-Jimenez W, Dimitrova T, Oh-Lee JD. Translating A2A antagonist KW6002 from animal models to parkinsonian patients. Neurology 2003;61:S107-S111.

    CAS  PubMed  Google Scholar 

  50. 50.

    LeWitt PA, Guttman M, Tetrad JW, et al. Adenosine A2A receptor antagonist istradefylline (KW-6002) reduces “off” time in Parkinson’s disease: a double-blind, randomized, multicenter clinical trial (6002-US-005). Ann Neurol 2008;63:295–302.

    CAS  PubMed  Google Scholar 

  51. 51.

    Salamone JD, Mayorga AJ, Trevitt JT, Cousins MS, Conlan A, Nawab A. Tremulous jaw movements in rats: a model of parkinsonian tremor. Prog Neurobiol 1998;56:591–611.

    CAS  PubMed  Google Scholar 

  52. 52.

    Ascherio A, Zhang SM, Hernán MA, et al. Prospective study of caffeine consumption and risk of Parkinson’s disease in men and women. Ann Neurol 2001;50:56–63.

    CAS  PubMed  Google Scholar 

  53. 53.

    Ross GW, Abbott RD, Petrovitch H, et al. Association of coffee and caffeine intake with the risk of Parkinson disease. JAMA 2000;283:2674–2679.

    CAS  PubMed  Google Scholar 

  54. 54.

    Powers KM, Kay DM, Factor SA, et al. Combined effects of smoking, coffee, and NSAIDs on Parkinson’s disease risk. Mov Disord 2008;23:88–95.

    PubMed  Google Scholar 

  55. 55.

    Ascherio A, Chen H, Schwarzschild MA, Zhang SM, Colditz GA, Speizer FE. Caffeine, postmenopausal estrogen, and risk of Parkinson’s disease. Neurology 2003;60:790–795.

    CAS  PubMed  Google Scholar 

  56. 56.

    Chen JF, Xu K, Petzer JP, et al. Neuroprotection by caffeine and A2A adenosine receptor inactivation in a model of Parkinson’s disease. J Neurosci 2001;21:RC143.

    CAS  PubMed  Google Scholar 

  57. 57.

    Ikeda K, Kurokawa M, Aoyama S, Kuwana Y. Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson’s disease. J Neurochem 2002;80:262–270.

    CAS  PubMed  Google Scholar 

  58. 58.

    Joghataic MT, Roghani M, Negahdar F, Hashemi L. Protective effect of caffeine against neurodegeneration in a model of Parkinson’s disease in rat: behavioral and histochemical evidence. Parkinsonism Relat Disord 2004;10:465–468.

    Google Scholar 

  59. 59.

    Bové J, Senats J, Mengod G, Cortés R, Tolosa E, Marin C. Neuroprotection induced by the adenosine A2A antagonist CSC in the 6-OHDA rat model of Parkinsonism: effect on the activity of striatal output pathways. Exp Brain Res 2005;165:362–374.

    PubMed  Google Scholar 

  60. 60.

    Pinna A, Fenu S, Morelli M. Motor stimulant effects of the adenosine A2A receptor antagonist SCH 58261 do not develop tolerance after repeated treatments in 6-hydroxydopamine-lesioned rats. Synapse 2001;39:233–238.

    CAS  Google Scholar 

  61. 61.

    Fredduzzi S, Moratalla R, Monopoli A, et al. Persistent behavioral sensitization to chronic L-DOPA requires A2A adenosine receptors. J Neurosci 2002;22:1054–1062.

    CAS  PubMed  Google Scholar 

  62. 62.

    Xiao D, Bastia E, Xu YH, et al. Forebrain adenosine A2A receptors contribute to L-3,4-dihydroxyphenylalanine-induced dyskinesia in hemi-Parkinsonian mice. J Neurosci 2006;26:13548–13555.

    CAS  PubMed  Google Scholar 

  63. 63.

    Jalkanen S, Salmi M. Cell surface monoamine oxidases: enzymes in search of a function. EMBO J 2001;20: 3893–3901.

    CAS  PubMed  Google Scholar 

  64. 64.

    Edmondson DE, Binda C, Mattevi A. The FAD binding sites of human monoamine oxidases A and B. Neurotoxicology 2004;25:63–72.

    CAS  PubMed  Google Scholar 

  65. 65.

    Weyler W, Hsu YP, Breakefield XO. Biochemistry and genetics of monoamine oxidase. Pharmacol Ther 1990;47:391–417.

    CAS  PubMed  Google Scholar 

  66. 66.

    Shih JC, Chen K, Ridd MJ. Monoamine oxidase: from genes to behavior. Annu Rev Neurosci 1999;22:197–217.

    CAS  PubMed  Google Scholar 

  67. 67.

    Youdim MB, Edmondson D, Tipton KF. The therapeutic potential of monoamine oxidase inhibitors. Nat Rev Neurosci 2006;7:295–309.

    CAS  PubMed  Google Scholar 

  68. 68.

    Waldmeier PC. Amine oxidases and their endogenous substrates (with special reference to monoamine oxidase and the brain). J Neural Transm Suppl 1987;23:55–72.

    CAS  PubMed  Google Scholar 

  69. 69.

    Inoue H, Castagnoli K, Van Der Schyf C, Mabic S, Igarashi K, Castagnoli N Jr. Species-dependent differences in monoamine oxidase A and B-catalyzed oxidation of various C4 substituted 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinyl derivatives. J Pharmacol Exp Ther 1999;291:856–864.

    CAS  PubMed  Google Scholar 

  70. 70.

    Weyler W, Salach JI. Purification and properties of mitochondrial monoamine oxidase type A from human placenta. J Biol Chem 1985;260:13199–207.

    CAS  PubMed  Google Scholar 

  71. 71.

    Saura J, Nadal E, van den Berg B, Vila M, Bombi JA, Mahy N. Localization of monoamine oxidases in human peripheral tissues. Life Sci 1996;59:1341–1349.

    CAS  PubMed  Google Scholar 

  72. 72.

    Westlund KN, Denney RM, Kochersperger LM, Rose RM, Abell CW. Distinct monoamine oxidase A and B populations in primate brain. Science 1985;230:181–183.

    CAS  PubMed  Google Scholar 

  73. 73.

    Kalaria RN, Mitchell MJ, Harik SI. Monoamine oxidases of the human brain and liver. Brain 1988;111:1441–1451.

    PubMed  Google Scholar 

  74. 74.

    Willoughby J, Glover V, Sandler M, Albanese A, Jenner P, Marsden CD. Monoamine oxidase activity and distribution in marmoset brain: implications for MPTP toxicity. Neurosci Lett 1988;90:100–106.

    CAS  PubMed  Google Scholar 

  75. 75.

    Riachi NJ, Harik SI. Monoamine oxidases of the brains and livers of macaque and cercopithecus monkeys. Exp Neurol 1992;115:212–217.

    CAS  PubMed  Google Scholar 

  76. 76.

    Levitt P, Pintar JE, Breakefield XO. Immunocytochemical demonstration of monoamine oxidase B in brain astrocytes and serotonergic neurons. Proc Natl Acad Sci USA 1982;79:6385–6389.

    CAS  PubMed  Google Scholar 

  77. 77.

    Fowler JS, Logan J, Volkow ND, Wang GJ, MacGregor RR, Ding YS. Monoamine oxidase: radiotracer development and human studies. Methods 2002;27:263–277.

    CAS  PubMed  Google Scholar 

  78. 78.

    Birkmayer W, Riederer P, Youdim MB, Linauer W. The potentiation of the anti akinetic effect after L-dopa treatment by an inhibitor of MAO-B, Deprenil. J Neural Transm 1975;36:303–326.

    CAS  PubMed  Google Scholar 

  79. 79.

    Shoulson I, Oakes D, Fahn S, et al. Impact of sustained deprenyl (selegiline) in levodopa-treated Parkinson’s disease: a randomized placebo-controlled extension of the deprenyl and tocopherol antioxidative therapy of parkinsonism trial. Ann Neurol 2002;51:604–612.

    CAS  PubMed  Google Scholar 

  80. 80.

    Pålhagen S, Heinonen EH, Hägglund J, et al. Selegiline delays the onset of disability in de novo parkinsonian patients. Neurology 1998;51:520–525.

    PubMed  Google Scholar 

  81. 81.

    Stocchi F, Vacca L, Grassini P, et al. Symptom relief in Parkinson disease by safinamide: biochemical and clinical evidence of efficacy beyond MAO-B inhibition. Neurology 2006;67:S24-S29.

    CAS  PubMed  Google Scholar 

  82. 82.

    Parkinson Study Group. Effect of lazabemide on the progression of disability in early Parkinson’s disease. Ann Neurol 1996;40:99–107.

    Google Scholar 

  83. 83.

    Pålhagen S, Heinonen E, Hägglund J, et al. Selegiline slows the progression of the symptoms of Parkinson disease. Neurology 2006;66:1200–1206.

    PubMed  Google Scholar 

  84. 84.

    Parkinson study group. A controlled, randomized, delayed-start study of rasagiline in early Parkinson’s disease. Arch Neurol 2004;61:561–566.

    Google Scholar 

  85. 85.

    Gesi M, Santinami A, Ruffoli R, Conti G, Fomai F. Novel aspects of dopamine oxidative metabolism (confounding outcomes take place of certainties). Pharmacol Toxicol 2001;89:217–224.

    CAS  PubMed  Google Scholar 

  86. 86.

    Fomai F, Giorgi FS, Bassi L, Ferrucci M, Alessandrì MG, Corsini GU. Modulation of dihydroxyphenylacetaldehyde extracellular levels in vivo in the rat striatum after different kinds of pharmacological treatment. Brain Res 2000;861:126–134.

    Google Scholar 

  87. 87.

    Marchitti SA, Deitrich RA, Vasiliou V. Neurotoxicity and metabolism of the catecholamine-derived 3,4-dihydroxyphenylacet-aldehyde and 3,4-dihydroxyphenylglycolaldehyde: the role of aldehyde dehydrogenase. Pharmacol Rev 2007;59: 125–150.

    CAS  PubMed  Google Scholar 

  88. 88.

    Götz ME, Freyberger A, Riederer P. Oxidative stress: a role in the pathogenesis of Parkinson’s disease. J Neural Transm Suppl 1990;29:241–249.

    PubMed  Google Scholar 

  89. 89.

    Riederer P, Sofic E, Rausch WD, et al. Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J Neurochem 1989;52:515–520.

    CAS  PubMed  Google Scholar 

  90. 90.

    Grünblatt E, Mandel S, Jacob-Hirsch J, et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm 2004;111:1543–1573.

    PubMed  Google Scholar 

  91. 91.

    Chiba K, Trevor A, Castagnoli N Jr. Metabolism of the neurotoxic tertiary amine, MPTP, by brain monoamine oxidase. Biochem Biophys Res Commun 1984;120:574–578.

    CAS  PubMed  Google Scholar 

  92. 92.

    Heikkila RE, Hess A, Duvoisin RC. Dopaminergic neurotoxicity of l-methyl-4-phenyl-1,2,5,6-tetrahydropyridine in mice. Science 1984;224:1451–1453.

    CAS  PubMed  Google Scholar 

  93. 93.

    Langsten JW, Ballard P, Tetrud JW, Irwin I. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 1983;219:979–980.

    Google Scholar 

  94. 94.

    Heikkila RE, Manzino L, Cabbat FS, Duvoisin RC. Protection against the dopaminergic neurotoxicity of 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine by monoamine oxidase inhibitors. Nature 1984;311:467–469.

    CAS  PubMed  Google Scholar 

  95. 95.

    Collins MA, Neafsey EJ. Potential neurotoxic “agents provocateurs” in Parkinson’s disease. Neurotoxicol Teratol 2002;24:571–577.

    CAS  PubMed  Google Scholar 

  96. 96.

    Mandel S, Weinreb O, Amit T, Youdim MB. Mechanism of neuroprotective action of the anti-Parkinson drug rasagiline and its derivatives. Brain Res Brain Res Rev 2005:379–387.

  97. 97.

    Youdim MB, Maruyama W, Naoi M. Neuropharmacological, neuroprotective and amyloid precursor processing properties of selective MAO-B inhibitor antiparkinsonian drug, rasagiline. Drugs Today (Barc) 2005;41:369–391.

    CAS  Google Scholar 

  98. 98.

    Maruyama W, Akao Y, Carrillo MC, Kitani K, Youdium MB, Naoi M. Neuroprotection by propargylamines in Parkinson’s disease: suppression of apoptosis and induction of prosurvival genes. Neurotoxicol Teratol 2002;24:675–682.

    CAS  PubMed  Google Scholar 

  99. 99.

    Carrillo MC, Minami C, Kitani K, et al. Enhancing effect of rasagiline on superoxide dismutase and catalase activities in the dopaminergic system in the rat. Life Sci 2000;67:577–585.

    CAS  PubMed  Google Scholar 

  100. 100.

    Kitani K, Kanai S, Ivy GO, Carrillo MC. Pharmacological modifications of endogenous antioxidant enzymes with special reference to the effects of deprenyl: a possible antioxidant strategy. Mech Ageing Dev 1999;111: 211–221.

    CAS  PubMed  Google Scholar 

  101. 101.

    Fredholm BB, Bättig K, Holmén J, Nehlig A, Zvartau EE. Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 1999;51:83–133.

    CAS  PubMed  Google Scholar 

  102. 102.

    Baraldi PG, Tabrizi MA, Bovero A, et al. Recent developments in the field of A2A and A3 adenosine receptor antagonists. Eur J Med Chem 2003;38:367–382.

    CAS  PubMed  Google Scholar 

  103. 103.

    Ongini E, Monopoli A, Cacciari B, Baraldi PG. Selective adenosine A2A receptor antagonists. Farmaco 2001;56:87–90.

    CAS  PubMed  Google Scholar 

  104. 104.

    Shiozaki S, Ichikawa S, Nakamura J, Kitamura S, Yamada K, Kuwana Y. Actions of adenosine A2A receptor antagonist KW-6002 on drug-induced catalepsy and hypokinesia caused by reserpine or MPTP. Psychopharmacology (Berl) 1999;147:90–95.

    CAS  Google Scholar 

  105. 105.

    Suzuki F, Shimada J, Shiozaki S, et al. Adenosine A, antagonists. 3. Structure-activity relationships on amelioration against scopolamine- or N6-((R)-phenylisopropyl)adenosine-induced cognitive disturbance. J Med Chem 1993;36: 2508–2518.

    CAS  PubMed  Google Scholar 

  106. 106.

    Kanda T, Shiozaki S, Shimada J, Suzuki F, Nakamura, J. KF 17837: a novel selective adenosine A2A receptor antagonist with anticataleptic activity. Eur J Pharmacol 1994;256:263–268.

    CAS  PubMed  Google Scholar 

  107. 107.

    Del Giudice MR, Borioni S, Mustazza C, et al. (E)-1-(Heterocyclyl or cyclohexyl)-2-[1,3,7-trisubstituted(xanthin-8-yl)]ethenes as A2A adenosine receptor antagonists. Eur J Med Chem 1996;31:59–63.

    Google Scholar 

  108. 108.

    Van den Berg D, Zoellner KR, Ogunrombi MO, et al. Inhibition of monoamine oxidase B by selected benzimidazole and caffeine analogues. Bioorg Med Chem 2007;15:3692–3702.

    PubMed  Google Scholar 

  109. 109.

    Castagnoli N Jr, Petzer JP, Steyn S, et al. Monoamine oxidase B inhibition and neuroprotection: studies on selective adenosine A2A receptor antagonists. Neurology 2003;61:S62-S68.

    CAS  PubMed  Google Scholar 

  110. 110.

    Pretorius J, Malan SF, Castagnoli N Jr, Bergh JJ, Petzer JP. Dual inhibition of monoamine oxidase B and antagonism of the adenosine A2A receptor by (E,E)-8-(4-phenylbutadien-l-yl)caffeine analogues. Bioorg Med Chem 2008;16:8676–8684.

    CAS  PubMed  Google Scholar 

  111. 111.

    Binda C, Newton-Vinson P, Hubálek F, Edmondson DE, Mattevi A. Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol 2002;9:22–26.

    CAS  PubMed  Google Scholar 

  112. 112.

    Binda C, Li M, Hubálek F, Restelli N, Edmondson DE, Mattevi A. Insights into the mode of inhibition of human mitochondrial monoamine oxidase B from high-resolution crystal structures. Proc Natl Acad Sci USA 2003;100:9750–9755.

    CAS  PubMed  Google Scholar 

  113. 113.

    Hubálek F, Binda C, Khalil A, et al. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. J Biol Chem 2005;280: 15761–15766.

    PubMed  Google Scholar 

  114. 114.

    Binda C, Wang J, Pisani L, et al. Structures of human monoamine oxidase B complexes with selective noncovalent inhibitors: safinamide and coumarin analogs. J Med Chem 2007;50:5848–5852.

    CAS  PubMed  Google Scholar 

  115. 115.

    Bolognesi ML, Cavalli A, Valgimigli L, et al. Multi-target-directed drug design strategy: from a dual binding site acetylcholinesterase inhibitor to a trifunctional compound against Alzheimer’s disease. J Med Chem 2007;50: 6446–6449.

    CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jacobus P. Petzer.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petzer, J.P., Castagnoli, N., Schwarzschild, M.A. et al. Dual-target-directed drugs that block monoamine oxidase B and adenosine A2A receptors for Parkinson’s disease. Neurotherapeutics 6, 141–151 (2009). https://doi.org/10.1016/j.nurt.2008.10.035

Download citation

Key Words

  • Parkinson’s disease
  • monoamine oxidase B
  • adenosine A2A receptor
  • dual-target-directed drug
  • caffeine