Approaching a new age in Duchenne muscular dystrophy treatment

Summary

Duchenne muscular dystrophy is the most common and severe form of muscular dystrophy. The cornerstones of current treatment include corticosteroids for skeletal muscle weakness, afterload reduction for cardiomyopathy, and noninvasive ventilation for respiratory failure. With these interventions, patients are walking and living longer. However, the current status is still far from adequate. Increased private and federal funding of studies in Duchenne muscular dystrophy has led to a large number of novel agents with propitious therapeutic potential. These include agents that modify dystrophin expression, increase muscle growth and regeneration, and modulate inflammatory responses. Many of these agents are already in clinical trials. Challenges to the development of additional novel therapeutics exist, including lack of validated animal models and lack of adequate biomarkers as surrogate endpoints. However, these challenges are not insurmountable and the next decade will likely see meaningful, new treatment options introduced into the clinical care of patients with Duchenne muscular dystrophy.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Moxley RT, III, Ashwal S, Pandya S, et al. Practice parameter: corticosteroid treatment of Duchenne dystrophy: report of the Quality Standards Subcommittee of the American Academy of Neurology and the Practice Committee of the Child Neurology Society 2005;64: 13–20.

    CAS  Google Scholar 

  2. 2.

    Fitch K, Bernstein SJ, Aguilar MS, et al. The RAND/UCLA Appropriateness Method User’s Manual. Santa Monica, CA. RAND Corp, 2001.

    Google Scholar 

  3. 3.

    Griggs RC, Moxley RT 3rd, Mendell JR, et al. Prednisone in Duchenne dystrophy: a randomized, controlled trial defining the time course and dose response. Clinical Investigation of Duchenne Dystrophy Group. Arch Neurol 1991;48: 383–388.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Mendell JR, Moxley RT, Griggs RC, et al. Randomized, double-blind six-month trial of prednisone in Duchenne’s muscular dystrophy. New Engl J Med 1989;320: 1592–1597.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Manzur AY, Kukntzer T, Pike M, Swan A. Glucocorticoid corticosteroids for Duchenne muscular dystrophy (Review). The Cochrane Library 2006:1–41.

  6. 6.

    Alman BA, Raza SN, Biggar WD. Steroid treatment and the development of scoliosis in males with duchenne muscular dystrophy. J Bone Joint Surg Am 2004;86-A: 519–524.

    PubMed  Google Scholar 

  7. 7.

    Biggar WD, Harris VA, Eliasoph L, Alman B. Long-term benefits of deflazacort treatment for boys with Duchenne muscular dystrophy in their second decade. Neuromusc Disord 2006;16: 249–255.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    King WM, Ruttencutter R, Nagaraja HN, et al. Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology 2007;68: 1607–1613.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Pandya S, Guntrum D, Moxley RT. Long term daily prednisone therapy delays decline in pulmonary function and improves survival in patients with Duchenne dystrophy. Neuromusc Disord 2005;15: 687.

    Google Scholar 

  10. 10.

    Wagner KR, Lechtzin N, Judge DP. Current treatment of adult Duchenne muscular dystrophy. Biochim Biophys Acta 2007;1772: 229–237.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Connolly AM, Schierbecker J, Renna R, Florence J. High dose weekly oral prednisone improves strength in boys with Duchenne muscular dystrophy. Neuromusc Disord 2002;12: 912–925.

    Google Scholar 

  12. 12.

    Fenichel GM, Mendell JR, Moxley RT, et al. A comparison of daily and alternate-day prednisone therapy in the treatment of Duchenne muscular dystrophy. Arch Neurol 1991;48: 575–579.

    CAS  PubMed  Article  Google Scholar 

  13. 13.

    Kinali M, Mercuri E, Main M, Dubowitz V. An effective, low-dosage, intermittent schedule of prednisolone in the long-term treatment of early cases of Duchenne dystrophy. Neuromusc Disord 2002;12(suppl 1): S169-S174.

    PubMed  Article  Google Scholar 

  14. 14.

    Angelini C, Pegoraro E, Turella E, et al. Deflazacort in Duchenne dystrophy: study of long-term effect. Muscle Nerve 1994;17: 386–391.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Biggar WD, Gingras M, Fehlings DL, et al. Deflazacort treatment of Duchenne muscular dystrophy. J Pediatr 2001;138: 45–50.

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Bonifati MD, Ruzza G, Bonometto P, et al. A multicenter, double-blind, randomized trial of deflazacort versus prednisone in Duchenne muscular dystrophy. Muscle Nerve 2000;23: 1344–1347.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Eagle M, Baudouin S, Chandler C, et al. Survival in Duchenne muscular dystrophy: improvements in life expectancy since 1967 and the impact of home nocturnal ventilation. Neuromusc Disord 2002;12: 926–929.

    PubMed  Article  Google Scholar 

  18. 18.

    Mohr CH, Hill NS. Long-term follow-up of nocturnal ventilatory assistance in patients with respiratory failure due to Duchenne-type muscular dystrophy. Chest 1990;97: 91–96.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Simonds AK, Muntoni F, Heather S, Fielding S. Impact of nasal ventilation on survival in hypercapnic Duchenne muscular dystrophy. Thorax 1998;53: 949–952.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  20. 20.

    Balaban B, Matthews DJ, Clayton GH, Carry T. Corticosteroid treatment and functional improvement in Duchenne muscular dystrophy: long-term effect. Am J Phys Med Rehabil 2005;84: 843–850.

    PubMed  Article  Google Scholar 

  21. 21.

    Daftary AS, Crisanti M, Kalra M, et al. Effect of long-term steroids on cough efficiency and respiratory muscle strength in patients with Duchenne muscular dystrophy. Pediatrics 2007;119: e320-e324.

    PubMed  Article  Google Scholar 

  22. 22.

    Nigro G, Comi LI, Politano L, Bain RJ. The incidence and evolution of cardiomyopathy in Duchenne muscular dystrophy. Int J Cardiol 1990;26: 271–277.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Markham LW, Kinnett K, Wong BL, et al. Corticosteroid treatment retards development of ventricular dysfunction in Duchenne muscular dystrophy. Neuromusc Disord 2008;18: 365–370.

    PubMed  Article  Google Scholar 

  24. 24.

    Duboc D, Meune C, Lerebours G, et al. Effect of perindopril on the onset and progression of left ventricular dysfunction in Duchenne muscular dystrophy. J Am Coll Cardiol 2005;45: 855–857.

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. New Engl J Med 1987;316:1429–1435.

    Google Scholar 

  26. 26.

    Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. New Engl J Med 1991;325:293–302.

  27. 27.

    The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 1999;353:9–13.

    Google Scholar 

  28. 28.

    Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial—the Losartan Heart Failure Survival Study ELITE II. Lancet 2000;355: 1582–1587.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Segal B, Pitt R, Martinez FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997;349: 747–752.

    PubMed  Article  Google Scholar 

  30. 30.

    Griggs RC, Moxley RTr, Mendell JR, et al. Duchenne dystrophy: randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology 1993;43: 520–527.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Kissel JT, Lynn DJ, Rammohan KW, et al. Mononuclear cell analysis of muscle biopsies in prednisone and azathrioprine treated Duchenne muscular dystrophy. Neurology 1993;43: 532–536.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Fisher I, Abraham D, Bouri K, et al. Prednisolone-induced changes in dystrophic skeletal muscle. FASEB J 2005;19: 834–836.

    CAS  PubMed  Google Scholar 

  33. 33.

    Hoffman EP, Brown RH, Kunkel LM. Dystrophin: the protein product of the duchenne muscular dystrophy locus. Cell 1987;51: 919–928.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Odom GL, Gregorevic P, Chamberlain JS. Viral-mediated gene therapy for the muscular dystrophies: Successes, limitations and recent advances. Biochim Biophys Acta 2007;1772: 243–262.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. 35.

    Rando TA. Non-viral gene therapy for Duchenne muscular dystrophy: progress and challenges. Biochim Biophys Acta 2007;1772: 263–271.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Crawford GE, Faulkner JA, Crosbie RH, et al. Assembly of the dystrophin-associated protein complex does not require the dystrophin COOH-terminal domain. J Cell Biol 2000;150: 1399–1410.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. 37.

    Fabb SA, Wells DJ, Serpente P, Dickson G. Adeno-associated virus vector gene transfer and sarcolemmal expression of a 144 kDa micodystrophin effectively restores the dystrophin-associated protein complex and inhibits myofibre degeneration in nude/mdx mice. Hum Mol Genet 2002;11: 733–741.

    CAS  PubMed  Article  Google Scholar 

  38. 38.

    Liu M, Yue Y, Harper SQ, et al. Adeno-associated virus-mediated microdystrophin expression protects young mdx muscle from contraction-induced injury. Mol Ther 2005;11: 245–256.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Sakamoto M, Yuasa K, Yoshimura M, et al. Micro-dystrophin cDNA ameliorates dystrophic phenotypes when introduced into mdx mice as a transgene. Biochem Biophys Res Commun 2002;293: 1265–1272.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Wang B, Li J, Xiao X. Adeno-associated virus vector carrying human minidystrophin genes effectively ameliorates muscular dystrophy in mdx mouse model. Proc Natl Acad Sci U S A 2000;95: 10158–10163.

    Google Scholar 

  41. 41.

    Duan D, Yan Z, Engelhardt JF. Expanding the capacity of AAV vectors. London, New York: Hodder Arnold; Distributed in the USA by Oxford University Press; 2006. p. 525–532.

    Google Scholar 

  42. 42.

    Ghosh A, Yue Y, Lai Y, Duan D. A hybrid vector system expands adeno-associated viral vector packaging capacity in a transgene-independent manner. Mol Ther 2007;16: 124–130.

    PubMed  Article  Google Scholar 

  43. 43.

    Salva MZ, Himeda CL, Tai PWL, et al. Design of tissue-specific regulatory cassettes for high-level raav-mediated expression in skeletal and cardiac muscle. Mol Ther 2007;15: 320–329.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Bremmer-Bout M, Aartsma-Rus A, de Meijer EJ, et al. Targeted exon skipping in transgenic hDMD mice: a model for direct preclinical screening of human-specific antisense oligonucleotides. Mol Ther 2004;10: 232–240.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Denti MA, Rosa A, D’Antona G, et al. Body-wide gene therapy of Duchenne muscular dystrophy in the mdx mouse model. Proc Natl Acad Sci U S A 2006;103: 3758–3763.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Lu QL, Rabinowitz A, Chen YC, et al. Systemic delivery of antisense oligoribonucleotide restores dystrophin expression in body-wide skeletal muscles. Proc Natl Acad Sci U S A 2005;102: 198–203.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  47. 47.

    van Deutekom JC, Janson AA, Ginjaar IB, et al. Local dystrophin restoration with antisense oligonucleotide PRO051. New Engl J Med 2007;357: 2677–2686.

    PubMed  Article  Google Scholar 

  48. 48.

    Barton-Davis ER, Cordier L, Shoturma DI, et al. Aminoglycoside antibiotics restore dystrophin function to skeletal muscles of mdx mice. J Clin Invest 1999;104: 375–381.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  49. 49.

    Dunant P, Walter MC, Karpati G, Lochmuller H. Gentamicin fails to increase dystrophin expression in dystrophin-deficient muscle. Muscle Nerve 2003;27: 624–627.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Wagner KR, Hamed S, Hadley DW, et al. Gentamicin treatment of Duchenne and Becker Muscular Dystrophy due to nonsense mutations. Ann Neurol 2001;49: 706–711.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Welch EM, Barton ER, Zhuo J, et al. PTC124 targets genetic disorders caused by nonsense mutations. Nature 2007;447: 87–91.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Hirawat S, Welch EM, Elfring GL, et al. Safety, tolerability and pharmacokinetics of PTC124, a nonaminoglycoside nonsense mutation suppressor, following single- and multiple-dose administration to healthy male and female adult volunteers. J Clin Pharmacol 2007;47: 430–444.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Engert JC, Berglund EB, Rosenthal N. Proliferation precedes differentiation in IGF-1 stimulated myogenesis. J Cell Biol 1996;135: 431–440.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Rosenthal SM, Cheng ZQ. Opposing early and late effects of insulin-like growth factor 1 on differentiation and the cell cycle regulatory retinoblastoma protein in skeletal myoblasts. Proc Natl Acad Sci U S A 1995;92: 10307–10311.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  55. 55.

    Glass DJ. Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell B 2005;37: 1974–1984.

    CAS  Article  Google Scholar 

  56. 56.

    Barton ER, Morris L, Musaro A, et al. Muscle-specific expression of insulin-like growth factor 1 counters muscle decline in mdx mice. J Cell Biol 2002;157: 137–147.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  57. 57.

    Shavlakadze T, White J, Hoh JFY, et al. Targeted expression of insulin-like growth factor-1 reduces early myofiber necrosis in dystrophic mdx mice. Mol Ther 2004;10: 829–843.

    CAS  PubMed  Article  Google Scholar 

  58. 58.

    Gregorevic P, Plant DR, Leeding KR, et al. Improved contractile function of the mdx dystrophic mouse diaphragm muscle after insulin-like growth factor-1 administration. Am J Pathology 2002;161: 2263–2271.

    CAS  Article  Google Scholar 

  59. 59.

    McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 1997;387: 83–90.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Lee S-J. Sprinting without myostatin: a genetic determinant of athletic prowess. Trends Genet 2007;23: 475–477.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Schuelke M, Wagner KR, Stolz LE, et al. Myostatin mutation associated with gross muscle hypertrophy in a child. New Engl J Med 2004;350: 2682–2688.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Wagner KR, McPherron AC, Winik N, Lee SJ. Loss of myostatin attenuates severity of muscular dystrophy in mdx mice. Ann Neurol 2002;52: 832–836.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    McCroskery S, Thomas M, Platt L, et al. Improved muscle healing through enhanced regeneration and reduced fibrosis in myostatin-null mice. J Cell Sci 2005;118: 3531–3541.

    CAS  PubMed  Article  Google Scholar 

  64. 64.

    Wagner KR, Liu X, Chang X, Allen RE. Muscle regeneration in the prolonged absence of myostatin. Proc Natl Acad Sci U S A 2005;102: 2519–2524.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  65. 65.

    McCroskery S, Thomas M, Maxwell L, et al. Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 2003;162: 1135–1147.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  66. 66.

    Rios R, Carneiro I, Arce VM, Devesa J. Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol 2002;282: C993–999.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Taylor WE, Bhasin S, Artaza J, et al. Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab 2001;280: E221–228.

    CAS  PubMed  Google Scholar 

  68. 68.

    Thomas M, Langley B, Berry C, et al. Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 2000;275: 40235–40243.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Wagner KR. Muscle regeneration through myostatin inhibition. Curr Opin Rheumatol 2005;17: 720–724.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Li ZB, Kollias HD, Wagner KR. Myostatin directly regulates skeletal muscle fibrosis. J Biol Chem 2008:M802585200.

  71. 71.

    Zhu J, Li Y, Shen W, et al. Relationship between TGF-beta1, myostatin and decorin: implications for skeletal muscle fibrosis. J Biol Chem 2007;282: 25852–25863.

    CAS  PubMed  Article  Google Scholar 

  72. 72.

    Lee SJ. Regulation of muscle mass by myostatin. Annu Rev Cell Dev Biol 2004;20: 61–86.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Lee SJ, Reed LA, Davies MV, et al. Regulation of muscle growth by multiple ligands signaling through activin type II receptors. Proc Natl Acad Sci U S A. 2005;102: 18117–18122.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  74. 74.

    Bogdanovich S, Krag TO, Barton ER, et al. Functional improvement of dystrophic muscle by myostatin blockade. Nature 2002;420: 418–421.

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Qiao C, Li J, Jiang J, et al. Myostatin propeptide gene delivery by adeno-associated virus serotype 8 vectors enhances muscle growth and ameliorates dystrophic phenotypes in mdx mice. Hum Gene Ther 2008;19: 241–254.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Wagner KR, Fleckenstein JL, Amato AA, et al. A phase I/II trial of MYO-029 in adult subjects with muscular dystrophy. Ann Neurol 2008;63: 561–571.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Allen RE, Boxhorn LK. Inhibition of skeletal muscle satellite cell differentiation by transforming growth factor-beta. J Cell Physiol 1987;1987: 576–572.

    Google Scholar 

  78. 78.

    Li Y, Foster W, Deasy BM, et al. Transforming growth factor-beta1 induces the differentiation of myogenic cells into fibrotic cells in injured skeletal muscle: a key event in muscle fibrogenesis. Am J Pathology 2004;164: 1007–1019.

    CAS  Article  Google Scholar 

  79. 79.

    Olson EN, Sternberg E, Hu JS, et al. Regulation of myogenic differentiation by type beta transforming growth factor. J Cell Biol 1986;103: 1799–1805.

    CAS  PubMed  Article  Google Scholar 

  80. 80.

    Bernasconi P, Torchiana E, Confalonieri P, et al. Expression of transforming growth factor-beta1 in dystrophic patient muscles correlates with fibrosis. J Clin Invest 1995;96: 1137–1144.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  81. 81.

    Chen YW, Nagaraju K, Bakay M, et al. Early onset of inflammation and later involvement of TGFbeta in Duchenne muscular dystrophy. Neurology 2005;65: 826–834.

    CAS  PubMed  Article  Google Scholar 

  82. 82.

    Zanotti S, Negri T, Cappelletti C, et al. Decorin and biglycan expression is differentially altered in several muscular dystrophies. Brain 2005;128: 2546–2555.

    PubMed  Article  Google Scholar 

  83. 83.

    Cohn RD, van Erp C, Habashi JP, et al. Angiotensin II type 1 receptor blockade attenuates TGF-beta-induced failure of muscle regeneration in multiple myopathic states. Nat Med 2007;13: 204–210.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  84. 84.

    Lavoie P, Robitaille G, Agharazii M, et al. Neutralization of transforming growth factor-beta attenuates hypertension and prevents renal injury in uremic rats. J. Hypertension 2005;23: 1895–1903.

    CAS  Article  Google Scholar 

  85. 85.

    Lim DS, Lutucuta S, Bachireddy P, et al. Angiotensin II blockade reverses myocardial fibrosis in a transgenic mouse model of human hypertrophic cardiomyopathy. Circulation 2001;103: 789–791.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  86. 86.

    Hayden MS, Ghosh S. Shared principles in NF-kB signaling. Cell 2008;132: 344–362.

    CAS  PubMed  Article  Google Scholar 

  87. 87.

    Mourkioti F, Rosenthal N. NF-kappaB signaling in skeletal muscle: prospects for intervention in muscle diseases. J Mol Med 2008;86: 747–759.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  88. 88.

    Acharyya S, Villalta SA, Bakkar N, et al. Interplay of IKK/NK-kappaB signaling in macrophages and myofibers promotes muscle degeneration in Duchenne muscular dystrophy. J Clin Invest 2007;117: 889–901.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  89. 89.

    Monici MC, Aguennouz M, Mazzeo A, et al. Activation of nuclear factor-kappaB in inflammatory myopathies and Duchenne muscular dystrophy. Neurology 2003;60: 993–997.

    CAS  PubMed  Article  Google Scholar 

  90. 90.

    Porter JD, Khanna S, Kaminski HJ, et al. A chronic inflammatory response dominates the skeletal muscle molecular signature in dystrophin-deficient mdx mice. Hum Mol Genet 2002;11: 263–272.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Kuntz C, Tesi-Rocha N, Clemens PR, et al. Immediate release oral pentoxifylline is poorly tolerated in Duchenne muscular dystrophy boys. Neurology 2008;70 (suppl 1): A79.

    Google Scholar 

  92. 92.

    Escolar D, Gorni K, Tesi-Rocha A, et al. Pentoxifylline treatment fails to rescue muscle strength and function deterioration in prednisone-treated Duchenne muscular dystrophy. Neurology 2008;70(suppl 1): A79.

    Google Scholar 

  93. 93.

    Burkin DJ, Wallace GQ, Nicol KJ. et al. Enhanced expression of the alpha7-beta1 integrin reduces muscular dystrophy and restores viability in dystrophic mice. J Cell Biol 2001;152: 1207–1218.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  94. 94.

    Nguyen HH, Jayasinha V, Xia B, et al. Overexpression of the cytotoxic T cell GalNAc transferase in skeletal muscle inhibits muscular dystrophy in mdx mice. Proc Natl Acad Sci U S A 2002;99: 5616–5621.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  95. 95.

    Hildebrand A, Romaris M, Rasmussen LM, et al. Interaction of the small interstitial proteoglycans biglycan, decorin and firbomodulin with transforming growth factor beta. Biochem J 1994;302(Part 2): 527–534.

    CAS  PubMed Central  PubMed  Google Scholar 

  96. 96.

    Rafii MS, Hagiwara H, Mercado ML, et al. Biglycan binds to alpha- and gamma-sarcoglycan and regulates their expression during development. J Cell Physiol 2006;209: 439–447.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  97. 97.

    Wiberg C, Hedbom E, Khairullina A, et al. Biglycan and deocrin bind close to the n-terminal region of the collagen VI triple helix. J Biol Chem 2001;276: 18947–18952.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Casar JC, McKechnie BA, Fallon JR, et al. Transient up-regulation of biglycan during skeletal muscle regeneration: delayed fiber growth along with decorin increase in biglycan-deficient mice. Dev Biol 2004;268: 358–371.

    CAS  PubMed  Article  Google Scholar 

  99. 99.

    Mercado ML, Amenta AR, Hagiwara H, et al. Biglycan regulates the expression and sarcolemmal localization of dystrobrevin, syntrophin, and nNOS. FASEB J 2006;20: 1724–1726.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  100. 100.

    Bulfield G, Siller WG, Wight PA, Moore KJ. X chromosome-linked muscular dystrophy (mdx) in the mouse. Proc Natl Acad Sci U S A 1984;81: 1189–1192.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  101. 101.

    Dubowitz V. Therapeutic efforts in Duchenne muscular dystrophy: the need for a common language between basic scientists and clinicians. Neuromusc Disord 2004;14: 451–455.

    PubMed  Article  Google Scholar 

  102. 102.

    Sharp NJ, Kornegay JN, Van Camp SD, et al. An error in dystrophin mRNA processing in golden retriever muscular dystrophy, an animal homologue of Duchenne muscular dystrophy. Genomics 1992;13: 115–121.

    CAS  PubMed  Article  Google Scholar 

  103. 103.

    Cooper BJ, Winand NJ, Stedman H, et al. The homologue of the Duchenne locus is defective in X-linked muscular dystrophy of dogs. Nature 1988;334: 154–156.

    CAS  PubMed  Article  Google Scholar 

  104. 104.

    Valentine BA, Winand NJ, Pradhan D, et al. Canine X-linked muscular dystrophy as an animal model of Duchenne muscular dystrophy: a review. Am J Med Genet 1992;42: 352–356.

    CAS  PubMed  Article  Google Scholar 

  105. 105.

    Wagner J. Strategic approach to fit-for-purpose biomarkers in drug development. Annu Rev Pharmacol Toxicol 2008;48: 631–651.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Kathryn R. Wagner.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wagner, K.R. Approaching a new age in Duchenne muscular dystrophy treatment. Neurotherapeutics 5, 583–591 (2008). https://doi.org/10.1016/j.nurt.2008.08.013

Download citation

Key Words

  • Duchenne
  • muscular dystrophy
  • clinical trials
  • therapeutics
  • myostatin
  • gene therapy