Spinal muscular atrophy

Summary

Spinal muscular atrophy (SMA) is a potentially devastating and lethal neuromuscular disease frequently manifesting in infancy and childhood. The discovery of the underlying mutation in the survival of motor neurons 1 (SMN1) gene has accelerated preclinical research, leading to treatment targets and transgenic mouse models, but there is still no effective treatment. The clinical severity is inversely related to the copy number of SMN2, a modifying gene producing some full-length SMN transcript. Drugs shown to increase SMN2 function in vitro, therefore, have the potential to benefit patients with SMA. Because several drugs are now on the horizon of clinical investigation, we review recent clinical trials for SMA and discuss the challenges and opportunities associated with SMA drug development. Although an orphan disease, SMA is well-positioned for successful trials given that it has a common genetic etiology in most cases, that it can be readily diagnosed, that preclinical research in vitro and in transgenic animals has identified candidate compounds, and that trial networks have been established.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    Hoffmann J. Über chronische spinale Muskelatrophie im Kindesalter, auf familiärer Basis [On chronic spinal muscular atrophy in childhood, with a familial basis; in German]. Dtsch Z Nervenheilkd 1893;3: 427–470.

    Article  Google Scholar 

  2. 2.

    Werdnig G. Zwei frühinfantile hereditäre Fälle von progressiver Muskelatrophie unter dem Bilde der Dystrophie, aber auf neurotischer Grundlage [Two early infantile hereditary cases of progressive muscular atrophy simulating dystrophy, but on a neural basis; in German]. Arch Psychiatr Nervenkr 1891;22: 437–480.

    Article  Google Scholar 

  3. 3.

    Gilliam TC, Brzustowicz LM, Castilla LH, et al. Genetic homogeneity between acute and chronic forms of spinal muscular atrophy. Nature 1990;345: 823–825.

    CAS  PubMed  Article  Google Scholar 

  4. 4.

    Lefebvre S, Bürglen L, Reboullet S, et al. Identification and characterization of a spinal muscular atrophy-determining gene. Cell 1995;80: 155–165.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Feldkötter M, Schwarzer V, Wirth R, Wienker TF, Wirth B. Quantitative analyses of SMN1 and SMN2 based on real-time LightCycler PCR: fast and highly reliable carrier testing and prediction of severity of spinal muscular atrophy. Am J Hum Genet 2002;70: 358–368.

    PubMed Central  PubMed  Article  Google Scholar 

  6. 6.

    Crawford TO. Spinal muscular atrophies. In: Jones HR, De Vivo DC, Darras BT, editors. Neuromuscular disorders of infancy, childhood, and adolescence: a clinician’s approach. Philadelphia: Butterworth-Heinemann, 2003: 145–166.

    Google Scholar 

  7. 7.

    Oskoui M, Levy G, Garland CJ, et al. The changing natural history of spinal muscular atrophy type 1. Neurology 2007;69: 1931–1936.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Iannaccone ST, Smith SA, Simard LR. Spinal muscular atrophy. Curr Neurol Neurosci Rep 2004;4: 74–80.

    PubMed  Article  Google Scholar 

  9. 9.

    Liu Q, Dreyfuss G. A novel nuclear structure containing the survival of motor neurons protein. EMBO J 1996;15: 3555–3565.

    CAS  PubMed Central  PubMed  Google Scholar 

  10. 10.

    Feng W, Gubitz AK, Wan L, et al. Gemins modulate the expression and activity of the SMN complex. Hum Mol Genet 2005;14: 1605–1611.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Pellizzoni L, Yong J, Dreyfuss G. Essential role for the SMN complex in the specificity of snRNP assembly. Science 2002;298: 1775–1779.

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Setola V, Terao M, Locatelli D, Bassanini S, Garattini E, Battaglia G. Axonal-SMN (a-SMN), a protein isoform of the survival motor neuron gene, is specifically involved in axonogenesis. Proc Natl Acad Sci U S A 2007;104: 1959–1964.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. 13.

    Zhang H, Xing L, Rossoll W, Wichterle H, Singer RH, Bassell GJ. Multiprotein complexes of the survival of motor neuron protein SMN with Gemins traffic to neuronal processes and growth cones of motor neurons. J Neurosci 2006;26: 8622–8632.

    CAS  PubMed  Article  Google Scholar 

  14. 14.

    Chan YB, Miguel-Aliaga I, Franks C, et al. Neuromuscular defects in a Drosophila survival motor neuron gene mutant. Hum Mol Genet 2003;12: 1367–1376.

    CAS  PubMed  Article  Google Scholar 

  15. 15.

    Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG. A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle. J Cell Biol 2007;176: 831–841.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  16. 16.

    Wang CH, Finkel RS, Bertini ES, et al; Participants of the International Conference on SMA Standard of Care. Consensus statement for standard of care in spinal muscular atrophy. J Child Neurol 2007;22: 1027–1049.

    PubMed  Article  Google Scholar 

  17. 17.

    Bach JR, Bianchi C. Prevention of pectus excavatum for children with spinal muscular atrophy type 1. Am J Phys Med Rehabil 2003;82: 815–819.

    PubMed  Article  Google Scholar 

  18. 18.

    Bach JR, Niranjan V, Weaver B. Spinal muscular atrophy type 1: a noninvasive respiratory management approach. Chest 2000;117: 1100–1105.

    CAS  PubMed  Article  Google Scholar 

  19. 19.

    Tefft D, Guerette P, Furumasu J. Cognitive predictors of young children’s readiness for powered mobility. Dev Med Child Neurol 1999;41: 665–670.

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Jones MA, McEwen IR, Hansen L. Use of power mobility for a young child with spinal muscular atrophy. Phys Ther 2003;83: 253–262.

    PubMed  Google Scholar 

  21. 21.

    Thoumie P, Charlier JR, Alecki M, et al. Clinical and functional evaluation of a gaze controlled system for the severely handicapped. Spinal Cord 1998;36: 104–109.

    CAS  PubMed  Article  Google Scholar 

  22. 22.

    O’Hagen JM, Ryan P, Wei Y, Kaufmann P, De Vivo DC. The effect of a gravity neutral orthosis on disability in children with SMA type 1. Paper presented at: 11th Annual International Spinal Muscular Atrophy Research Group Meeting, Schaumburg, IL, June 21–23, 2007.

  23. 23.

    Russman BS, Iannaccone ST, Samaha FJ. A phase 1 trial of riluzole in spinal muscular atrophy. Arch Neurol 2003;60: 1601–1603.

    PubMed  Article  Google Scholar 

  24. 24.

    Wong B, Hynan L, Iannaccone S, et al. A randomized, placebo-controlled trial of creatine in children with spinal muscular atrophy. J Clin Neuromusc Dis 2007;8: 101–110.

    Article  Google Scholar 

  25. 25.

    Kinali M, Mercuri E, Main M, et al. Pilot trial of albuterol in spinal muscular atrophy. Neurology 2002;59: 609–610.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Angelozzi C, Borgo F, Tiziano FD, Martella A, Neri G, Brahe C. Salbutamol increases SMN mRNA and protein levels in spinal muscular atrophy cells. J Med Genet 2008;45: 29–31.

    CAS  PubMed  Article  Google Scholar 

  27. 27.

    Azzouz M, Le T, Ralph GS, et al. Lentivector-mediated SMN replacement in a mouse model of spinal muscular atrophy. J Clin Invest 2004;114: 1726–1731.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. 28.

    Monani UR, Lorson CL, Parsons DW, et al. A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 1999;8: 1177–1183.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Lorson CL, Hahnen E, Androphy EJ, Wirth B. A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 1999;96: 6307–6311.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  30. 30.

    Brichta L, Hofmann Y, Hahnen E, et al. Valproic acid increases the SMN2 protein level: a well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 2003;12: 2481–2489.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Grzeschik SM, Ganta M, Prior TW, Heavlin WD, Wang CH. Hydroxyurea enhances SMN2 gene expression in spinal muscular atrophy cells. Ann Neurol 2005;58: 194–202.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Andreassi C, Angelozzi C, Tiziano FD, et al. Phenylbutyrate increases SMN expression in vitro: relevance for treatment of spinal muscular atrophy. Eur J Hum Genet 2004;12: 59–65.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Hirtz D, Iannaccone S, Heemskerk J, Gwinn-Hardy K, Moxley R 3rd, Rowland LP. Challenges and opportunities in clinical trials for spinal muscular atrophy. Neurology 2005;65: 1352–1357.

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Miller RG, Moore DH, Dronsky V, et al. A placebo-controlled trial of gabapentin in spinal muscular atrophy. J Neurol Sci 2001;191: 127–131.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Merlini L, Solari A, Vita G, et al. Role of gabapentin in spinal muscular atrophy: results of a multicenter, randomized Italian study. J Child Neurol 2003;18: 537–541.

    PubMed  Article  Google Scholar 

  36. 36.

    Tzeng AC, Cheng J, Fryczynski H, et al. A study of thyrotropin-releasing hormone for the treatment of spinal muscular atrophy: a preliminary report. Am J Phys Med Rehabil 2000;79: 435–440.

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Mercuri E, Bertini E, Messina S, et al. Pilot trial of phenylbutyrate in spinal muscular atrophy. Neuromuscul Disord 2004;14: 130–135.

    PubMed  Article  Google Scholar 

  38. 38.

    Mercuri E, Bertini E, Messina S, et al. Randomized, double-blind, placebo-controlled trial of phenylbutyrate in spinal muscular atrophy. Neurology 2007;68: 51–5.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Kaufmann P, Finkel R. Learning to walk: challenges for spinal muscular atrophy clinical trials. Neurology 2007;68: 11–12.

    PubMed  Article  Google Scholar 

  40. 40.

    Swoboda KJ, Kissel JT, Crawford TO, et al. Perspectives on clinical trials in spinal muscular atrophy. J Child Neurol 2007;22: 957–966.

    PubMed Central  PubMed  Article  Google Scholar 

  41. 41.

    Liang WC, Yuo CY, Chang JG, et al. The effect of hydroxyurea in spinal muscular atrophy cells and patients. J Neurol Sci 2008;268: 87–94.

    CAS  PubMed  Article  Google Scholar 

  42. 42.

    Brichta L, Holker I, Haug K, Klockgether T, Wirth B. In vivo activation of SMN in spinal muscular atrophy carriers and patients treated with valproate. Ann Neurol 2006;59: 970–975.

    CAS  PubMed  Article  Google Scholar 

  43. 43.

    Weihl CC, Connolly AM, Pestronk A. Valproate may improve strength and function in patients with type III/IV spinal muscle atrophy. Neurology 2006;67: 500–501.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Munsat T, Davies K. Spinal muscular atrophy. 32nd ENMC International Workshop. Naarden, 10–12 March 1995. Neuromuscul Disord 1996;6: 125–127.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Kaufmann P, Muntoni F; International Coordinating Committee for SMA Subcommittee on SMA Clinical Trial Design. Issues in SMA clinical trial design. The International Coordinating Committee (ICC) for SMA Subcommittee on SMA Clinical Trial Design. Neuromuscul Disord 2007;17: 499–505.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Iannaccone ST. Outcome measures for pediatric spinal muscular atrophy. Arch Neurol 2002;59: 1445–1450.

    PubMed  Article  Google Scholar 

  47. 47.

    Iannaccone ST, Hynan LS; American Spinal Muscular Atrophy Randomized Trials (AmSMART) Group. Reliability of 4 outcome measures in pediatric spinal muscular atrophy. Arch Neurol 2003;60: 1130–1136.

    PubMed  Article  Google Scholar 

  48. 48.

    Mercuri E, Messina S, Battini R, et al. Reliability of the Hammersmith functional motor scale for spinal muscular atrophy in a multicentric study. Neuromuscul Disord 2006;16: 93–8.

    CAS  PubMed  Article  Google Scholar 

  49. 49.

    Merlini L, Bertini E, Minetti C, et al. Motor function—muscle strength relationship in spinal muscular atrophy. Muscle Nerve 2004;29: 548–552.

    PubMed  Article  Google Scholar 

  50. 50.

    Main M, Kairon H, Mercuri E, Muntoni F. The Hammersmith functional motor scale for children with spinal muscular atrophy: a scale to test ability and monitor progress in children with limited ambulation. Eur J Paediatr Neurol 2003;7: 155–159.

    PubMed  Article  Google Scholar 

  51. 51.

    De Gruttola VG, Clax P, DeMets DL, et al. Considerations in the evaluation of surrogate endpoints in clinical trials: summary of a National Institutes of Health workshop. Control Clin Trials 2001;22: 485–502.

    PubMed  Article  Google Scholar 

  52. 52.

    Lesko LJ, Atkinson AJ Jr. Use of biomarkers and surrogate endpoints in drug development and regulatory decision making: criteria, validation, strategies. Annu Rev Pharmacol Toxicol 2001;41: 347–366.

    CAS  PubMed  Article  Google Scholar 

  53. 53.

    Monani UR, Sendtner M, Coovert DD, et al. The human centromeric survival motor neuron gene (SMN2) rescues embryonic lethality in Smn −/− mice and results in a mouse with spinal muscular atrophy. Hum Mol Genet 2000;9: 333–339.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Le TT, Pham LT, Butchbach ME, et al. SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 2005;14: 845–857.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Frugier T, Tiziano FD, Cifuentes-Diaz C, et al. Nuclear targeting defect of SMN lacking the C-terminus in a mouse model of spinal muscular atrophy. Hum Mol Genet 2000;9: 849–858.

    CAS  PubMed  Article  Google Scholar 

  56. 56.

    El-Khodor BF, Edgar N, Chen A, et al. Identification of a battery of tests for drug candidate evaluation in the SMNDelta7 neonate model of spinal muscular atrophy. Exp Neurol 2008;212: 29–43.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Winberg M, El-Khodor B, Ramboz S, et al. Beneficial effects of valproic acid (VPA) and hydroxyurea (HU) in a mouse model of spinal muscular atrophy (SMA). Neurology 2007;68(Suppl 1): A403 (abstract).

    Google Scholar 

  58. 58.

    Iannaccone S, Hynan LS, Group A. Challenges of enrollment for SMA type I clinical trials. Neuromuscul Disord 2007;17: 780 (abstract).

    Article  Google Scholar 

  59. 59.

    Pearn J. Incidence, prevalence, and gene frequency studies of chronic childhood spinal muscular atrophy. J Med Genet 1978;15: 409–413.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  60. 60.

    Kaufmann P, Finkel R, Darras B, et al; for the PNCR Network. The natural history of spinal muscular atrophy: preliminary results from the PNCR Network. Neuromuscul Disord 2007;17: 776–777 (abstract).

    Article  Google Scholar 

  61. 61.

    Cudkowicz ME, Shefner JM, Schoenfeld DA, et al; Northeast ALS Consortium. A randomized, placebo-controlled trial of topiramate in amyotrophic lateral sclerosis. Neurology 2003;61: 456–464.

    CAS  PubMed  Article  Google Scholar 

  62. 62.

    Gordon PH, Moore DH, Miller RG, et al; Western ALS Study Group. Efficacy of minocycline in patients with amyotrophic lateral sclerosis: a phase III randomised trial. Lancet Neurol 2007;6: 1045–1053.

    CAS  PubMed  Article  Google Scholar 

  63. 63.

    Reaman GH. Clinical advances in pediatric hematology & oncology: cooperative group research. Clin Adv Hematol Oncol 2005;3: 133–135.

    PubMed  Google Scholar 

  64. 64.

    Widemann BC, Balis FM, Shalabi A, et al. Treatment of accidental intrathecal methotrexate overdose with intrathecal carboxypeptidase G2. J Natl Cancer Inst 2004;96: 1557–1559.

    CAS  PubMed  Article  Google Scholar 

  65. 65.

    Reaman GH. Pediatric cancer research from past successes through collaboration to future transdisciplinary research. J Pediatr Oncol Nurs 2004;21: 123–127.

    PubMed  Article  Google Scholar 

  66. 66.

    Kennedy GE, Peersman G, Rutherford GW. International collaboration in conducting systematic reviews: the Cochrane Collaborative Review Group on HIV Infection and AIDS. J Acquir Immune Defic Syndr 2002;30 Suppl 1: S56-S61.

    PubMed  Article  Google Scholar 

  67. 67.

    Levy G, Kaufmann P, Buchsbaum R, et al. A two-stage design for a phase II clinical trial of coenzyme Q10 in ALS. Neurology 2006;66: 660–663.

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Kaufmann P, Levy G, Montes J, et al; QALS Study Group. Excellent inter-rater, intra-rater, and telephone-administered reliability of the ALSFRS-R in a multicenter clinical trial. Amyotroph Lateral Scler 2007;8: 42–46.

    PubMed  Article  Google Scholar 

  69. 69.

    Nayak MS, Kim YS, Goldman M, Keirstead HS, Kerr DA. Cellular therapies in motor neuron diseases. Biochim Biophys Acta 2006;1762: 1128–1138.

    CAS  PubMed  Article  Google Scholar 

  70. 70.

    Wichterle H, Lieberam I, Porter JA, Jessell TM. Directed differentiation of embryonic stem cells into motor neurons. Cell 2002;110: 385–397.

    CAS  Article  Google Scholar 

  71. 71.

    Gao J, Coggeshall RE, Chung JM, Wang J, Wu P. Functional motoneurons develop from human neural stem cell transplants in adult rats. Neuroreport 2007;18: 565–569.

    PubMed  Article  Google Scholar 

  72. 72.

    Gao J, Coggeshall RE, Tarasenko YI, Wu P. Human neural stem cell-derived cholinergic neurons innervate muscle in motoneuron deficient adult rats. Neuroscience 2005;131: 257–262.

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Harper JM, Krishnan C, Darman JS, et al. Axonal growth of embryonic stem cell-derived motoneurons in vitro and in motoneuron-injured adult rats. Proc Natl Acad Sci U S A 2004;101: 7123–7128.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  74. 74.

    Deshpande DM, Kim YS, Martinez T, et al. Recovery from paralysis in adult rats using embryonic stem cells. Ann Neurol 2006;60: 32–44.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Petra Kaufmann.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Oskoui, M., Kaufmann, P. Spinal muscular atrophy. Neurotherapeutics 5, 499–506 (2008). https://doi.org/10.1016/j.nurt.2008.08.007

Download citation

Key Words

  • Spinal muscular atrophy
  • clinical trials