Skip to main content
Log in

Rationale and use of near-infrared spectroscopy for detection of lipid-rich and vulnerable plaques

  • From Bench to Imaging
  • Published:
Journal of Nuclear Cardiology Aims and scope

Conclusion

NIR spectroscopy is theoretically well suited for detection of lipid-rich plaque and possibly of vulnerable plaque in the coronary arterial wall. Advances in lasers and fiber optics have resulted in development of a catheter-based system that can image through blood without the need for flushing or tissue apposition under cardiac motion and scan entire arteries within seconds. Although preliminary results are promising, a multicenter clinical study is under way to demonstrate the efficacy of an existing NIR spectroscopy system. Detection of coronary lipid-rich plaque may have clinical applicability but is undoubtedly the first step toward detection of vulnerable plaques. Further refinement of chemometric algorithms and use of molecular imaging targets may enhance the ability of this technique to assess for other markers of vulnerability, such as plaque inflammation and hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Encrenaz T. Solar-system studies in the infrared range recent developments and future plans. Infrared Phys Technol 1994;35:95–106.

    Article  CAS  Google Scholar 

  2. Ciurczak EW, Drennen JKIII. Pharmaceutical and medical applications of near-infrared spectroscopy. New York: Marcel Dekker, 2002.

    Google Scholar 

  3. Gabriely I, Wozniak R, Mevorach M, Kaplan J, Aharon Y, Shamoon H. Transcutaneous glucose measurement using nearinfrared spectroscopy during hypoglycemia. Diabetes Care 1999; 22:2026–32.

    Article  PubMed  CAS  Google Scholar 

  4. Mendelson Y. Pulse oximetry: theory and applications, for noninvasive monitoring. Clin Chem 1992;38:1601–7.

    PubMed  CAS  Google Scholar 

  5. Cassis LA, Lodder RA, Near-IR imaging of atheromas in living arterial tissue. Anal Chem 1993;65:1247–56.

    Article  PubMed  CAS  Google Scholar 

  6. Dempsey RJ, Cassis LA, Davis DG, Lodder RA. Near-infrared imaging and spectroscopy in stroke research: lipoprotein distribution and disease. Ann NY Acad Sci 1997;820:149–69.

    Article  PubMed  CAS  Google Scholar 

  7. Jaross W, Neumeister V, Lattke P, Schuh D. Determination of cholesterol in atherosclerotic plaques using near infrared diffuse reflection spectroscopy. Atherosclerosis 1999;147:327–37.

    Article  PubMed  CAS  Google Scholar 

  8. Neumeister V, Scheibe M, Lattke P, Jaross W. Determination of the cholesterol-collagen ratio of arterial atherosclerotic plaques using near infrared spectroscopy as a possible measure of plaque stability. Atherosclerosis 2002;165:251–7.

    Article  PubMed  CAS  Google Scholar 

  9. Wang J, Geng YJ, Guo B, Klima T, Lal BN, Willerson JT, et al. Near-infrared spectroscopic characterization of human advanced atherosclerotic plaques. J Am Coll Cardiol 2002;39:1305–13.

    Article  PubMed  Google Scholar 

  10. Moreno PR, Lodder RA, Purushothaman KR, Charash WE, O’Connor WN, Muller JE. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 2002;105:923–7.

    Article  PubMed  Google Scholar 

  11. Moreno PR, Muller JE. Identification of high-risk atherosclerotic plaques: a survey of spectroscopic methods. Curr Opin Cardiol 2002;17:638–47.

    Article  PubMed  Google Scholar 

  12. Moreno PR, Muller JE. Detection of high-risk atherosclerotic coronary plaques by intravascular spectroscopy. J Interv Cardiol 2003;16:243–52.

    Article  PubMed  Google Scholar 

  13. Caplan JD, Waxman S, Nesto RW, Muller JE. Near-infrared spectroscopy for the detection of vulnerable coronary artery plaques. J Am Coll Cardiol 2006;47:C92–6.

    Article  PubMed  Google Scholar 

  14. Stary HC, Chandler AB, Dinsmore RE, Fuster V, Glagov S, Insull W, et al. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Circulation 1995;92:1355–74.

    PubMed  CAS  Google Scholar 

  15. Stary HC. Natural history and histological classification of atherosclerotic lesions: an update. Arterioscler Thromb Vasc Biol 2000; 20:1177–8.

    PubMed  CAS  Google Scholar 

  16. Davies MJ. The pathophysiology of acute coronary syndromes. Heart 2000;83:361–6.

    Article  PubMed  CAS  Google Scholar 

  17. Falk E, Shah PK, Fuster V. Coronary plaque disruption. Circulation 1995;92:657–71.

    PubMed  CAS  Google Scholar 

  18. Muller JE, Abela GS, Nesto RW, Tofler GH. Triggers, acute risk factors and vulnerable plaques: the lexicon of a new frontier. J Am Coll Cardiol 1994;23:809–13.

    Article  PubMed  CAS  Google Scholar 

  19. Fuster, V, Moreno PR, Fayad ZA, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque: part I: evolving concepts. J Am Coll Cardiol 2005;46:937–54.

    Article  PubMed  Google Scholar 

  20. Vink A, Pasterkamp G. Atherosclerotic plaques: how vulnerable is the definition of “the vulnerable plaque”? J Interv Cardiol 2003; 16:115–22.

    PubMed  Google Scholar 

  21. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685–95.

    Article  PubMed  CAS  Google Scholar 

  22. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation 2005;111:3481–8.

    Article  PubMed  Google Scholar 

  23. Falk E. Pathogenesis of atherosclerosis. J Am Coll Cardiol 2006;47:C7–12.

    Article  PubMed  CAS  Google Scholar 

  24. van der Wal AC, Becker AE, van der Loos CM, Das PK. Site of intimal rupure or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994;89:36–44.

    PubMed  Google Scholar 

  25. Farb A, Burke AP, Tang AL, Liang TY, Mannan P, Smialek J, et al. Coronary plaque erosion without rupture into a lipid core: a frequent cause of coronary thrombosis in sudden coronary death. Circulation 1996;93:1354–63.

    PubMed  CAS  Google Scholar 

  26. Virmani R, Kolodgie FD, Burke AP, Farb A, Schwartz SM. Lessons from sudden coronary death: a comprehensive morphological classification scheme for atherosclerotic lesions. Arterioscler Thromb Vasc Biol 2000;20:1262–75.

    PubMed  CAS  Google Scholar 

  27. Kolodgie FD, Burke AP, Farb A, Gold HK, Yuan J, Narula J, et al. The thin-cap fibroatheroma: a type of vulnerable plaque: the major precursor lesion to acute coronary syndromes. Curr Opin Cardiol 2001;16:285–92.

    Article  PubMed  CAS  Google Scholar 

  28. Virmani R, Burke AP, Kolodgie FD, Farb A. Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J Interv Cardiol 2003;16:267–72.

    Article  PubMed  Google Scholar 

  29. Virmani R, Burke AP, Farb A, Kolodgie FD. Pathology of the vulnerable plaque. J Am Coll Cardiol 2006;47:C13–8.

    Article  PubMed  CAS  Google Scholar 

  30. Schaar JA, Muller JE, Falk E, Virmani R, Fuster V, Serruys PW, et al. Terminology for high-risk and vulnerable coronary artery plaques. Report of a meeting on the vulnerable plaque, June 17 and 18, 2003, Santorini, Greece. Eur Heart J 2004;25:1077–82.

    Article  PubMed  Google Scholar 

  31. Waxman S, Ishibashi F, Muller JE. Detection and treatment of vulnerable plaques and vulnerable patients: novel approaches to prevention of coronary events. Circulation 2006;114:2390–411.

    Article  PubMed  Google Scholar 

  32. Fuster V, Fayad ZA, Moreno PR, Poon M, Corti R, Badimon JJ. Atherothrombosis and high-risk plaque: part II: approaches by noninvasive computed tomographic/magnetic resonance imaging. J Am Coll Cardiol 2005;46:1209–18.

    Article  PubMed  CAS  Google Scholar 

  33. Libby P. Act local, act global: inflammation and the multiplicity of “vulnerable” coronary plaques. J Am Coll Cardiol 2005;45:1600–2.

    Article  PubMed  Google Scholar 

  34. Falk E. Plaque rupture with severe pre-existing stenosis precipitating coronary thrombosis. Characteristics of coronary atherosclerotic plaques underlying fatal occlusive thrombi. Br Heart J 1983;50:127–34.

    Article  PubMed  CAS  Google Scholar 

  35. Frink RJ. Chronic ulcerated plaques: new insights into the pathogenesis of acute coronary disease. J Invasive Cardiol 1994;6:173–85.

    PubMed  CAS  Google Scholar 

  36. Hong MK, Mintz GS, Lee CW, Kim YH, Lee SW, Song JM, et al. Comparison of coronary plaque rupture between stable angina and acute myocardial infarction: a three-vessel intravascular ultrasound study in 235 patients. Circulation 2004;110:928–33.

    Article  PubMed  Google Scholar 

  37. Goldstein JA, Chandra HR, O’Neill WW. Relation of number of complex coronary lesions to serum C-reactive protein levels and major adverse cardiovascular events at one year. Am J Cardiol 2005;96:56–60.

    Article  PubMed  CAS  Google Scholar 

  38. Wang JC, Normand SL, Mauri L, Kuntz RE. Coronary artery spatial distribution of acute myocardial infarction occlusions. Circulation 2004;110:278–84.

    Article  PubMed  Google Scholar 

  39. Cutlip DE, Chhabra AG, Baim DS, Chauhan MS, Marulkar S, Massaro J, et al. Beyond restenosis: five-year clinical outcomes from second-generation coronary stent trials. Circulation 2004; 110:1226–30.

    Article  PubMed  Google Scholar 

  40. Nogueira GV, Silveira L Martin AA, Zangaro RA, Pacheco MT, Chavantes MC, et al. Raman spectroscopy study of atherosclerosis in human carotid artery. J Biomed Opt 2005;10:031117.

    Article  PubMed  Google Scholar 

  41. Motz JT, Puppels GJ, Waxman S, Bakker Schut TC, Marple E, Green N, et al. Percutaneous intracoronary Raman spectroscopy [abstract]. Cardiovasc Revasc Med 2007;8:127.

    Article  Google Scholar 

  42. Roberts WC. Diffuse extent of coronary atherosclerosis in fatal coronary artery disease. Am J Cardiol 1990;65:2F-6F.

    Article  PubMed  CAS  Google Scholar 

  43. Small DM. George Lyman Duff memorial lecture. Progression and regression of atherosclerotic lesions. Insights from lipid physical biochemistry. Arteriosclerosis 1988;8:103–29.

    PubMed  CAS  Google Scholar 

  44. Marshik B, Tan H, Tang J, et al. Discrimination of lipid-rich plaques in human aorta specimens with NIR spectroscopy through whole blood [abstract]. Am J Cardiol 2002;90(Suppl 6A):129H.

    Google Scholar 

  45. Marshik B, Tan H, Tang J, et al. Detection of thin-capped fibroatheromas in human aorta tissue with near infrared spectroscopy through blood [abstract]. J Am Coll Cardiol 2003;41(Suppl 1):42.

    Article  Google Scholar 

  46. Waxman S, Tang J, Marshik BJ, Tan H, Khabbaz KR, Connolly RJ, et al. In vivo detection of a coronary artificial target with a near infrared spectroscopy catheter [abstract]. Am J Cardiol 2004; 94(Suppl 6A):141E.

    Google Scholar 

  47. Waxman S, Khabbaz K, Connolly R, Tang J, Dabreo A, Egerhei L, et al. Intravascular imaging of atherosclerotic human coronaries in a porcine model: a feasibility study. Int J Cardiovasc Imaging. In press 2007.

  48. Waxman S, L’Allier P, Tardif JC, Goldstein J, Ishibashi F, Caplan JD, et al. Scanning near-infrared (NIR) spectroscopy of coronary arteries for detection of lipid-rich plaque in patients undergoing PCI—early results of the SPECTACL study [abstract]. Circulation 2006;114:II-647.

    Article  Google Scholar 

  49. Waxman S, L’Allier P, Goldstein J, Krucoff MW, Tardif JC, Dixon S, et al. Detection of lipid rich plaque by near infrared spectroscopy (NIRS) in patients undergoing coronary intervention: results in an unblinded cohort of the SPECT roscopic assessment of coronary lipid (SPECTACLE) study. Am J Cardiol. In press.

  50. Joner M, Finn AV, Farb A, Mont EK, Kolodgie FD, Ladich E, et al. Pathology of drug-eluting stents in humans: delayed healing and late thrombotic risk. J Am Coll Cardiol 2006;48:193–202.

    Article  PubMed  Google Scholar 

  51. Oyabu J, Ueda Y, Ogasawara N, Okada K, Hirayama A, Kodama K. Angioscopic evaluation of neointima coverage: sirolimus drug-eluting stent versus bare metal stent. Am Heart J 2006;152:1168–74.

    Article  PubMed  CAS  Google Scholar 

  52. Garcia-Garcia HM, Goedhart D, Serruys PW. Relation of plaque size to necrotic core in the three major coronary arteries in patients with acute coronary syndrome as determined by intravascular ultrasonic imaging radiofrequency. Am J Cardiol 2007;99:790–2.

    Article  PubMed  Google Scholar 

  53. Nicholls SJ, Tuzcu EM, Sipahi I, Grasso AW, Schoenhagen P, Hu T, et al. Statins, high-density lipoprotein cholesterol, and regression of coronary atherosclerosis. JAMA 2007;297:499–508.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Waxman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waxman, S., Ishibashi, F. & Caplan, J.D. Rationale and use of near-infrared spectroscopy for detection of lipid-rich and vulnerable plaques. J Nucl Cardiol 14, 719–728 (2007). https://doi.org/10.1016/j.nuclcard.2007.08.001

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2007.08.001

Keywords

Navigation