Skip to main content

Advertisement

Log in

MRI of left ventricular function

  • Advances in Nonnuclear Imaging Technologies
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardiac magnetic resonance imaging (CMR) is widely recognized as the most accurate noninvasive imaging modality for the assessment of left ventricular (LV) function. By use of state-of-the-art magnetic resonance imaging (MRI) scanners, electrocardiography (ECG)-gated cine images depicting LV function with high contrast and excellent spatial and temporal resolution are readily acquired in breath-holds of 5 to 10 heartbeats. For patients in whom breath-holding and ECG gating are difficult, real-time cine imaging without ECG gating and breath-holding can be performed. LV function can be qualitatively assessed from cine images, or alternatively, parameters such as LV volumes, ejection fraction, and mass may be quantified via computer-based analysis software. In addition, techniques such as myocardial tagging and newer variants can be used to qualitatively or quantitatively assess regional intramyocardial strain, twist, and torsion. Many of the CMR methods have undergone clinical evaluation in the settings of high-dose dobutamine stress testing and determination of myocardial viability. These methods are also very accurate for prognosis in coronary heart disease patients and may be quite useful for the detection of contractile dyssynchrony. When used together with other CMR techniques such as first-pass perfusion imaging or late gadolinium enhancement, CMR of LV function provides a wealth of information in a single imaging study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. White HD, Norris RM, Brown MA, Brandt PW, Whitlock RM, Wild CJ. Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 1987;76:44–51.

    PubMed  CAS  Google Scholar 

  2. Pattynama PM, Lamb HJ, van der Velde EA, Van der Wall EE. De Roos A. Left ventricular measurements with cine and spin-echo MR imaging: a study of reproducibility with variance component analysis. Radiology 1993;187:261–8.

    PubMed  CAS  Google Scholar 

  3. Cranney GB, Lotan CS, Dean L, Baxley W, Bouchard A, Pohost GM. Left ventricular volume measurement using cardiac axis nuclear magnetic resonance imaging. Validation by calibrated ventricular angiography. Circulation 1990;82:154–63.

    PubMed  CAS  Google Scholar 

  4. Ichikawa Y, Sakuma H, Kitagawa K, Ishida N, Takeda K, Uemura S, et al. Evaluation of left ventricular volumes and ejection fraction using fast steady-state cine MR imaging: comparison with left ventricular angiography. J Cardiovasc Magn Reson 2003;5:333–42.

    Article  PubMed  Google Scholar 

  5. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology 2001;219:828–34.

    PubMed  CAS  Google Scholar 

  6. Bellenger NG, Burgess MI, Ray SG, Lahiri A, Coats AJ, Cleland JG, et al. Comparison of left ventricular ejection fraction and volumes in heart failure by echocardiography, radionuclide ventriculography and cardiovascular magnetic resonance: are they interchangeable? Eur Heart J 2000;21:1387–96.

    Article  PubMed  CAS  Google Scholar 

  7. Bellenger NG, Mareus NJ, Davies C, Yacoub M, Banner NR, Pennell DJ et al. Left ventricular function and mass after orthotopic heart transplantation: a comparison of cardiovascular magnetic resonance with echocardiography. J Heart Lung Transplant 2000;19:444–52.

    Article  PubMed  CAS  Google Scholar 

  8. Buck T, Hunold P, Wentz KU, Tkalec W, Nesser HJ, Erbel R, et al. Tomographic three-dimensional echocardiographic determination of chamber size and systolic function in patients with left ventricular aneurysm: comparison to magnetic resonance imaging, cineventriculography, and two-dimensional echocardiography. Circulation 1997;96:4286–97.

    PubMed  CAS  Google Scholar 

  9. Sugeng L, Mor-Avi V, Weinert L, Niel J, Ebner C, Steringer-Mascherbauer R, et al. Quantitative assessment of left ventricular size and function: side-by-side comparison of real-time three-dimensional echocardiography and computed tomography with magnetic resonance reference. Circulation 2006;114:654–61.

    Article  PubMed  Google Scholar 

  10. Heuschmid M, Rothfuss JK, Schroeder S, Fenchel M, Stauder N, Burgstahler C, et al. Assessment of left ventricular myocardial function using 16-slice multidetector-row computed tomography: comparison with magnetic resonance imaging and echocardiography. Eur Radiol 2006;16:551–9.

    Article  PubMed  Google Scholar 

  11. Atkinson DJ, Edelman RR. Cineangiography of the heart in a single breath hold with a segmented turboFLASH sequence. Radiology 1991;178:357–60.

    PubMed  CAS  Google Scholar 

  12. Pruessmann KP, Weiger M, Boesiger P. Sensitivity encoded cardiac MRI. J Cardiovasc Magn Reson 2001;3:1–9.

    Article  PubMed  CAS  Google Scholar 

  13. Foo TK, Bernstein MA, Aisen AM, Hernandez RJ, Collick BD, Bernstein T. Improved ejection fraction and flow velocity estimates with use of view sharing and uniform repetition time excitation with fast cardiac techniques. Radiology 1995;195:471–8.

    PubMed  CAS  Google Scholar 

  14. Heid O. True FISP cardiac fluoroscopy [abstract]. Proc Intl Soc Magn Reson Med 1997;7:320.

    Google Scholar 

  15. Hardy CJ, Darrow RD, Nieters EJ, Roemer PB, Watkins RD, Adams WJ, et al. Real-time acquisition, display, and interactive graphic control of NMR cardiac profiles and images. Magn Reson Med 1993;29:667–73.

    Article  PubMed  CAS  Google Scholar 

  16. Kerr AB, Pauly JM, Hu BS, Li KC, Hardy CJ, Meyer CH, et al. Real-time interactive MRI on a conventional scanner [published erratum appears in Magn Reson Med 1998;40:952-5]. Magn Reson Med 1997;38:355–67.

    Article  PubMed  CAS  Google Scholar 

  17. Jakob PM, Griswold MA, Edelman RR, Manning WJ, Sodickson DK. Accelerated cardiac imaging using the SMASH technique. J Cardiovasc Magn Reson 1999;1:153–7.

    Article  PubMed  CAS  Google Scholar 

  18. Guttman MA, Kellman P, Dick AJ, Lederman RJ, McVeigh ER. Real-time accelerated interactive MRI with adaptive TSENSE and UNFOLD. Magn Reson Med 2003;50:315–21.

    Article  PubMed  Google Scholar 

  19. Kaji S, Yang PC, Kerr AB, Tang WH, Meyer CH, Macovski A, et al. Rapid evaluation of left ventricular volume and mass without breath-holding using real-time interactive cardiac magnetic resonance imaging system. J Am Coll Cardiol 2001;38:527–33.

    Article  PubMed  CAS  Google Scholar 

  20. Weiger M, Pruessmann KP, Boesiger P. Cardiac real-time imaging using SENSE SEN Sitivity Encoding scheme. Magn Reson Med 2000;43:177–84.

    Article  PubMed  CAS  Google Scholar 

  21. Kellman P, Epstein FH, McVeigh ER. Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn Reson Med 2001;45:846–52.

    Article  PubMed  CAS  Google Scholar 

  22. Schalla S, Klein C, Paetsch I, Lehmkuhl H, Bornstedt A, Schnackenburg B, et al. Real-time MR image acquisition during high-dose dobutamine hydrochloride stress for detecting left ventricular wallmotion abnormalities in patients with coronary anerial disease. Radiology 2002;224:845–51.

    Article  PubMed  Google Scholar 

  23. Moon JC, Lorenz CH, Francis JM, Smith GC, Pennell DJ. Breath-hold FLASH and FISP cardiovascular MR imaging: left ventricular volume differences and reproducibility. Radiology 2002;223:789–97.

    Article  PubMed  Google Scholar 

  24. Cottin Y, Touzery C, Guy F, Lalande A, Ressencourt O, Roy S, et al. MR imaging of the heart in patients after myocardial infarction: effect of increasing intersection gap on measurements of left ventricular volume, ejection fraction, and wall thickness. Radiology 1999;213:513–20.

    PubMed  CAS  Google Scholar 

  25. Lorenz CH, Walker ES, Morgan VL, Klein SS, Graham TP Jr. Normal human right and left ventricular mass, systolic function, and gender differences by cine magnetic resonance imaging. J. Cardiovasc. Magn Reson 1999;1:7–21.

    Article  PubMed  CAS  Google Scholar 

  26. Lorenz CH. The range of normal values of cardiovascular structures in infants, children, and adolescents measured by magnetic resonance imaging. Pediatr Cardiol 2000;21:37–46.

    Article  PubMed  CAS  Google Scholar 

  27. Alfakih K, Plein S, Thiele H, Jones T, Ridgway JP, Sivananthan MU. Normal human left and right ventricular dimensions for MRI as assessed by turbo gradient echo and steady-state free precession imaging sequences. J Magn Reson Imaging 2003;17:323–9.

    Article  PubMed  Google Scholar 

  28. Young AA, Cowan BR, Thrupp SF, Hedley WJ, Dell’Italia LJ. Left ventricular mass and volume: fast calculation with guide-point modeling on MR images. Radiology 2000;216:597–602.

    PubMed  CAS  Google Scholar 

  29. van der Geest RJ, Lelieveldt BP Reiber JH. Quantification of global and regional ventricular function in cardiac magnetic resonance imaging. Top Magn Reson Imaging 2000;11:348–58.

    Article  PubMed  Google Scholar 

  30. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Tagging with MR imaging—a method for noninvasive assessment of myocardial motion. Radiology 1988;169:59–63.

    PubMed  CAS  Google Scholar 

  31. Axel L, Dougherty L. Imaging of motion with spatial modulation of magnetization. Radiology 1989;171:841–5.

    PubMed  CAS  Google Scholar 

  32. Pelc LR, Sayre J, Yun K, Castro LJ, Herfkens RJ, Miller DC, et al. Evaluation of myocardial motion tracking with cine-phase contrast magnetic resonance imaging. Investigative Radiology 1994;29: 1038–42.

    Article  PubMed  CAS  Google Scholar 

  33. Osman NF, Kerwin WS, McVeigh ER, Prince JL Cardiac motion tracking using CINE harmonic phase (HARP) magnetic resonance imaging. Magn Reson Med 1999;42:1048–60.

    Article  PubMed  CAS  Google Scholar 

  34. Aletras AH, Ding S, Balaban RS, Wen H. DENSE displacement encoding with stimulated echoes in cardiac functional MRI. J Magn Reson, 1999;137:247–52.

    Article  PubMed  CAS  Google Scholar 

  35. Aletras AH, Balaban RS, Wen H. High-resolution strain analysis of the human heart with fast-DENSE. J Magn Reson 1999;140: 41–57.

    Article  PubMed  CAS  Google Scholar 

  36. Aletras AH, Wen H. Mixed echo train acquisition displacement encoding with stimulated echoes: an optimized DENSE method for in vivo functional imaging of the human heart. Magn Reson Med 2001;46:523–34.

    Article  PubMed  CAS  Google Scholar 

  37. Kim D, Gilson WD, Kramer CM, Epstein FH. Myocardial tissue tracking with two-dimensional cine displacement-encoded MR imaging: development and initial evaluation. Radiology 2004;230:862–71.

    Article  PubMed  Google Scholar 

  38. McVeigh ER, Atalar E. Cardiac tagging with breath-hold cine MRI. Magn Reson Med 1992;28:318–27.

    Article  PubMed  CAS  Google Scholar 

  39. Zwanenburg JJ, Kuijer JP, Marcus JT, Heethaar RM. Steady-state free precession with myocardial tagging: CSPAMM in a single breathhold. Magn Reson Med 2003;49:722–30.

    Article  PubMed  Google Scholar 

  40. Herzka DA, Guttman MA, McVergh ER. Myocardial tagging with SSFP. Magn Reson Med 2003;49:329–340.

    Article  PubMed  Google Scholar 

  41. Kim D, Bove CM, Kramer CM, Epstein FH. Importance of k-space trajectory in echo-planar myocardial tagging at rest and during dobutamine stress. Magn Reson Med 2003;50:813–20.

    Article  PubMed  Google Scholar 

  42. McVeigh ER. MRI of myocardial function: motion tracking techniques. Magn Reson Imaging 1996;14:137–50.

    Article  PubMed  CAS  Google Scholar 

  43. Young AA, Axel L. Three-dimensional motion and deformation of the heart wall: estimation with spatial modulation of magnetization— a model-based approach. Radiology 1992;185:241–7.

    PubMed  CAS  Google Scholar 

  44. Young AA, Imai H, Chang CN, Axel L. Two-dimensional left ventricular deformation during systole using magnetic resonance imaging with spatial modulation of magnetization [published erratum appears in Circulation 1994;90:1584]. Circulation 1994; 89:740–52.

    PubMed  CAS  Google Scholar 

  45. Guttman MA, Prince JL, McVeigh ER. Tag and contour detection in tagged MR images of the left ventricle. IEEE Trans Med Imaging 1994;13:74–88.

    Article  PubMed  CAS  Google Scholar 

  46. Bundy JM, Lorenz CH. TAGASIST: a post-processing and analysis tools package for tagged magnetic resonance imaging. Comput Med Imaging Graph 1997;21:225–32.

    Article  PubMed  CAS  Google Scholar 

  47. Garot J, Bluemke DA, Osman NF, Rochitte CE, McVeigh ER, Zerhouni EA, et al. Fast determination of regional myocardial strain fields from tagged cardiac images using harmonic phase MRI. Circulation 2000;101:981–8.

    PubMed  CAS  Google Scholar 

  48. Pelc NJ, Drangova M, Pelc LR, Zhu Y, Noll DC, Bowman BS, et al. Tracking of cyclic motion with phase-contrast cine MR velocity data. J Magn Reson Imaging 1995;5:339–45.

    Article  PubMed  CAS  Google Scholar 

  49. Zhu Y, Drangova M, Pelc NJ. Estimation of deformation gradient and strain from cine-PC velocity data. IEEE Trans Med Imaging 1997;16:840–51.

    Article  PubMed  CAS  Google Scholar 

  50. Constable RT, Rath KM, Sinusas AJ, Gore JC. Development and evaluation of tracking algorithms for cardiac wall motion analysis using phase velocity MR imaging. Magn Reson Med 1994;32:33–42.

    Article  PubMed  CAS  Google Scholar 

  51. Lingamneni A, Hardy PA, Powell KA, Pelc NJ, White RD. Validation of cine phase-contrast MR imaging for motion analysis. J Magn Reson Imaging 1995;5:331–8.

    Article  PubMed  CAS  Google Scholar 

  52. Zhong X, Spottiswoode BS, Cowart EA, Gilson WD, Epstein FH, Zhong X, et al. Selective suppression of artifact-generating echoes in cine DENSE using through-plane dephasing. Magn Reson Med 2006;56:1126–31.

    Article  PubMed  Google Scholar 

  53. Spottiswoode BS, Zhong X, Hess AT, Kramer CM, Meintjes EM, Mayosi BM, et al. Tracking myocardial motion from cine DENSE images using spatiotemporal phase unwrapping and temporal fitting. IEEE Trans Med Imaging 2007;26:15–30.

    Article  PubMed  CAS  Google Scholar 

  54. Zhong X, Spottiswoode BS, Meyer CH, Epstein FH. Two-dimensional spiral cine DENSE [abstract]. Proc Intl Soc Magn Reson Med 2007;15:756.

    Google Scholar 

  55. Spottiswoode BS, Zhong X, Lorenz CH, Meintjes EM, Mayosi BM, Epstein FH. Tracking 3D myocardial motion using slide-followed cine DENSE [abstract]. J Cardiovasc Magn Reson 2006;8:187.

    Google Scholar 

  56. Baer FM, Theissen P, Schneider CA, Voth E, Sechtem U, Schicha H, et al. Dobutamine magnetic resonance imaging predicts contractile recovery of chronically dysfunctional myocardium after successful revascularization. J Am Coll Cardiol 1998;31:1040–8.

    Article  PubMed  CAS  Google Scholar 

  57. Baer FM, Voth E, Schneider CA, Theissen P, Schicha H, Sechtem U. Comparison of low-dose dobutamine-gradient-echo magnetic resonance imaging and positron emission tomography with [18F]fluorodeoxyglucose in patients with chronic coronary artery disease. A functional and morphological approach to the detection of residual myocardial viability. Circulation 1995;91:1006–15.

    PubMed  CAS  Google Scholar 

  58. Baer FM, Theissen P, Crnac J, Schmidt M, Deutsch HJ, Sechtem U, et al. Head to head comparison of dobutamine-transoesophageal echocardiography and dobutamine-magnetic resonance imaging for the prediction of left ventricular functional recovery in patients with chronic coronary artery disease. Eur Heart J 2000;21:981–91.

    Article  PubMed  CAS  Google Scholar 

  59. Dendale P, Franken PR, Holman E, Avenarius J, Van der Wall EE, De Roos A. Validation of low-dose dobutamine magnetic resonance imaging for assessment of myocardial viability after infarction by serial imaging. Am J Cardiol 1998;82:375–7.

    Article  PubMed  CAS  Google Scholar 

  60. Kim RJ, Wu E, Rafael A, Chen EL, Parker MA, Simonetti O, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000; 343:1445–53.

    Article  PubMed  CAS  Google Scholar 

  61. Kaandorp TA, Bax JJ, Schuijf JD, Viergever EP, van Der Wall EE, de Roos A, et al. Head-to-head comparison between contrast-enhanced magnetic resonance imaging and dobutamine magnetic resonance imaging in men with ischemic cardiomyopathy. Am J Cardiol 2004;93:1461–4.

    Article  PubMed  Google Scholar 

  62. Wellnhofer E, Olariu A, Klein C, Grafe M, Wahl A, Fleck E, et al. Magnetic resonance low-dose dobutamine test is superior to SCAR quantification for the prediction of functional recovery. Circulation 2004;109:2172–4.

    Article  PubMed  Google Scholar 

  63. Bove CM, DiMaria JM, Voros S, Conaway MR, Kramer CM. Dobutamine response and myocardial infarct transmurality: functional improvement after coronary artery bypass grafting—initial experience. Radiology 2006;240:835–41.

    Article  PubMed  Google Scholar 

  64. Nagel E, Lehmkuhl HB, Bocksch W, Klein C, Vogel U, Frantz E, et al. Noninvasive diagnosis of ischemia-induced wall motion abnormalities with the use of high-dose dobutamine stress MRI-comparison with dobutamine stress echocardiography. Circulation 1999;99:763–70.

    PubMed  CAS  Google Scholar 

  65. Hundley WG, Hamilton CA, Thomas MS, Herrington DM, Salido TB, Kitzman DW, et al. Utility of fast cine magnetic resonance imaging and display for the detection of myocardial ischemia in patients not well suited for second harmonic stress echocardiography. Circulation 1999;100:1697–702.

    PubMed  CAS  Google Scholar 

  66. Fischer SE, Wickline SA, Lorenz CH. Novel real-time R-wave detection algorithm based on the vectorcardiogram for accurate gated magnetic resonance acquisitions. Magn Reson Med 1999; 42:361–70.

    Article  PubMed  CAS  Google Scholar 

  67. Hamilton CA, Link KM, Salido TB, Epstein FH, Hundley WG. Is imaging at intermediate doses necessary during dobutamine stress magnetic resonance imaging? J Cardiovase Magn Reson 2001;3: 297–302.

    Article  CAS  Google Scholar 

  68. Kuijpers D, Janssen CH, van Dijkman PR, Oudkerk M. Dobutamine stress MRI. Part I. Safety and feasibility of dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 2004;14:1823–8.

    PubMed  Google Scholar 

  69. Hundley WG, Morgan TM, Neagle CM, Hamilton CA, Rerkpattanapipat P, Link KM. Magnetic resonance imaging determination of cardiac prognosis. Circulation 2002;106:2328–33.

    Article  PubMed  Google Scholar 

  70. Kuijpers D, van Dijkman PR, Janssen CH, Vliegenthart R, Zijlstra F, Oudkerk M. Dobutamine stress MRI. Part II. Risk stratification with dobutamine cardiovascular magnetic resonance in patients suspected of myocardial ischemia. Eur Radiol 2004;14:2046–52.

    Article  PubMed  Google Scholar 

  71. Paetsch I, Jahnke C, Wahl A, Gebker R, Neuss M, Fleck E, et al. Comparison of dobutamine stress magnetic resonance, adenosine stress magnetic resonance, and adenosine stress magnetic resonance perfusion. Circulation 2004;110:835–42.

    Article  PubMed  CAS  Google Scholar 

  72. Gotte MJ, van Rossum AC, Twisk JWR, Kuijer JPA, Marcus JT, Visser CA, et al. Quantification of regional contractile function after infarction: strain analysis superior to wall thickening analysis in discriminating infarct from remote myocardium. J Am Coll Cardiol 2001;37:808–17.

    Article  PubMed  CAS  Google Scholar 

  73. Geskin G, Kramer CM, Rogers WJ, Theobald TM, Pakstis D, Hu YL, et al. Quantitative assessment of myocardial viability after infarction by dobutamine magnetic resonance tagging. Circulation 1998;98:217–23.

    PubMed  CAS  Google Scholar 

  74. Bree D, Wollmuth JR, Cupps BP, Krock MD, Howells A, Rogers J, et al. Low-dose dobutamine tissue-tagged magnetic resonance imaging with 3-dimensional strain analysis allows assessment of myocardial viability in patients with ischemic cardiomyopathy. Circulation 2006;114(Suppl):133–6.

    Article  Google Scholar 

  75. Samady H, Choi CJ, Ragosta M, Powers ER, Beller GA, Kramer CM, et al. Electromechanical mapping identifies improvement in function and retention of contractile reserve after revascularization in ischemic cardiomyopathy. Circulation 2004;110:2410–6.

    Article  PubMed  Google Scholar 

  76. Kuijpers D, Ho KY, van Dijkman PR, Vliegenthart R, Oudkerk M. Dobutamine cardiovascular magnetic resonance for the detection of myocardial ischemia with the use of myocardial tagging. Circulation 2003;107:1592–7.

    Article  PubMed  Google Scholar 

  77. Paetsch I, Foll D, Kaluza A, Luechinger R, Stuber M, Bornstedt A, et al. Magnetic resonance stress tagging in ischemic heart disease. Am J Physiol Heart Circ Physiol 2005;288:H2708–14.

    Article  PubMed  CAS  Google Scholar 

  78. Power TP, Kramer CM, Shaffer AL, Theobald TM, Petruolo S, Reichek N, et al. Breath-hold dobutamine magnetic resonance myocardial tagging: normal left ventricular response. Am J Cardiol 1997;80:1203–7.

    Article  PubMed  CAS  Google Scholar 

  79. Abraham WT, Fisher WG, Smith AL, Delurgio DB, Leon AR, Loh E, et al. Cardiac resynchronization in chronic heart failure. N Engl J Med 2002;346:1845–53.

    Article  PubMed  Google Scholar 

  80. Bradley DJ, Bradley EA, Baughman KL, Berger RD, Calkins H, Goodman SN, et al. Cardiac resynchronization and death from progressive heart failure: a meta-analysis of randomized controlled trials. JAMA 2003;289:730–40.

    Article  PubMed  Google Scholar 

  81. Sogaard P, Egeblad H, Kim WY, Jensen HK, Pedersen AK, Kristensen BO, et al. Tissue Doppler imaging predicts improved systolic performance and reversed left ventricular remodeling during long-term cardiac resynchronization therapy. J Am Coll Cardiol 2002;40:723–30.

    Article  PubMed  Google Scholar 

  82. McVeigh ER, Prinzen FW, Wyman BT, Tsitlik JE, Halperin HR, Hunter WC. Imaging asynchronous mechanical activation of the paced heart with tagged MRI. Magn Reson Med 1998;39:507–13.

    Article  PubMed  CAS  Google Scholar 

  83. Wyman BT, Hunter WC, Prinzen FW, McVeigh ER. Mapping propagation of mechanical activation in the paced heart with MRI tagging. Am J Physiol 1999;276(Pt 2):H881–91.

    PubMed  CAS  Google Scholar 

  84. Leclercq C, Faris O, Tunin R, Johnson J, Kato R, Evans F, et al. Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation 2002;106:1760–3.

    Article  PubMed  Google Scholar 

  85. Zwanenburg JJ, Gotte MJ, Kuijer JP, Heethaar RM, van Rossum AC, Marcus JT. Timing of cardiac contraction in humans mapped by high-temporal-resolution MRI tagging: early onset and late peak of shortening in lateral wall. Am J Physiol Heart Circ Physiol 2004;286:H1872–80.

    Article  PubMed  CAS  Google Scholar 

  86. Nelson GS, Curry CW, Wyman BT, Kramer A, Declerck J, Talbot M, et al. Predictors of systolic augmentation from left ventricular preexcitation in patients with dilated cardiomyopathy and intraventricular conduction delay. Circulation 2000; 101:2703–9.

    PubMed  CAS  Google Scholar 

  87. Sensky PR, Jivan A, Hudson NM, Keal RP, Morgan B, Tranter JL, et al. Coronary artery disease: combined stress MR imaging protocol-one-stop evaluation of myocardial perfusion and function. Radiology 2000;215:608–14.

    PubMed  CAS  Google Scholar 

  88. Plein S, Ridgway JP, Jones TR, Bloomer TN, Sivananthan MU. Coronary artery disease: assessment with a comprehensive MR imaging protocol—initial results. Radiology 2002;225:300–7.

    Article  PubMed  Google Scholar 

  89. Kwong RY, Schussheim AE, Rekhraj S, Aletras AH, Geller N, Davis J, et al. Detecting acute coronary syndrome in the emergency department with cardiac magnetic resonance imaging. Circulation 2003;107:531–7.

    Article  PubMed  Google Scholar 

  90. Epstein FH and Gilson WG. Quantitative MRI of regional myocardial function In: Hundley WG, editor. CMRSAP: cardiovascular magnetic resonance self-assessment program. Bethesda, MD: American College of Cardiology Foundation; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick H. Epstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epstein, F.H. MRI of left ventricular function. J Nucl Cardiol 14, 729–744 (2007). https://doi.org/10.1016/j.nuclcard.2007.07.006

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2007.07.006

Keywords

Navigation