Skip to main content

Advertisement

Log in

Diagnostic value of PET-measured heterogeneity in myocardial blood flows during cold pressor testing for the identification of coronary vasomotor dysfunction

  • Original Articles
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

We aimed to evaluate the diagnostic value of a positron emission tomography (PET)-measured heterogeneity in longitudinal myocardial blood flow (MBF) during cold pressor testing (CPT) and global MBF response to CPT from rest (ΔMBF) for identification of coronary vasomotor dysfunction.

Methods and Results

In 35 patients CPT-induced alterations in epicardial luminal area were determined with quantitative angiography as the reference. MBF was assessed over the whole left ventricle as global MBF and regionally in the mid and mid-distal myocardium as MBF difference or MBF heterogeneity with nitrogen-13 ammonia and PET. The sensitivity and specificity of a longitudinal MBF difference during CPT in the identification of epicardial vasomotor dysfunction were significantly higher, than the global ΔMBF to CPT (88% vs 79% and 82% vs 64%, respectively; P<.05). Combining both parameters resulted in an optimal sensitivity of 100% at the expense of an intermediate specificity of 73%. The diagnostic accuracy was higher for the combined analysis than that for the MBF difference alone and global ΔMBF alone (91% vs 86% and 74%, respectively; P<.05).

Conclusions

The combined evaluation of a CPT-induced heterogeneity in longitudinal MBF and the change in global MBF from rest may emerge as a new promising analytic approach to further optimize the identification and characterization of coronary vasomotor dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schindler, TH, Nitzsche EU, Olschewski M, Brink I, Mix M, Prior J, et al. PET-measured responses of MBF to cold pressor testing correlate with indices of coronary vasomotion on quantitative coronary angiography. J Nucl Med 2004;45:419–28.

    PubMed  Google Scholar 

  2. Schindler TH, Cardenas J, Prior JO, Facta AD, Kreissl MC, Zhang XL, et al. Relationship between increasing body weight, insulin resistance, inflammation, adipocytokine leptin, and coronary circulatory function. J Am Coll Cardiol 2006;47:1188–95.

    Article  PubMed  CAS  Google Scholar 

  3. Schindler TH, Nitzsche BU, Munzel T, Oischewski M, Brink I, Jeserich M. et al. Coronary vasoregulation in patients with various risk factors in response to cold pressor testing: contrasting myocardial blood flow responses to short- and long-term vitamin C administration. J Am Coll Cardiol 2003;42:814–22.

    Article  PubMed  Google Scholar 

  4. Prior JO, Quinones MJ, Hernandez-Pampaloni M, Facta AD, Schindler TH, Sayre JW, et al. Coronary circulatory dysfunction in insulin resistance, impaired glucose tolerance, and type 2 diabetes mellitus. Circulation 2005;111:2291–8.

    Article  PubMed  CAS  Google Scholar 

  5. Schindler TH, Nitzsche EU, Olschewski M, Magosaki N, Mix M, Prior JO. et al. Chronic inflammation and impaired coronary vasoreactivity in patients with coronary risk factors. Circulation 2004;110:1069–75.

    Article  PubMed  Google Scholar 

  6. Campisi R, Czernin J, Schoder H, Sayre JW, Marengo FD, Phelps ME, et al. Effects of long-term smoking on myocardial blood flow, coronary vasomotion, and vasodilator capacity. Circulation 1998;98:119–25.

    PubMed  CAS  Google Scholar 

  7. Di Carli MF, Bianco-Batlles D, Landa ME, Kazmers A, Groehn H, Muzik O. et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813–9.

    PubMed  Google Scholar 

  8. Kaufmann PA, Camici PG. Myocardial blood flow measurement by PET: technical aspects and clinical applications. J Nucl Med 2005;46:75–88.

    PubMed  Google Scholar 

  9. Widlansky ME, Gokce N, Keaney JF Jr, Vita JA. The clinical implications of endothelial dysfunction. J Am Coll Cardiol 2003;42:1149–60.

    Article  PubMed  CAS  Google Scholar 

  10. Ganz P, Vita JA. Testing endothelial vasomotor function: nitric oxide, a multipotent molecule. Circulation 2003;108:2049–53.

    Article  PubMed  Google Scholar 

  11. Schindler TH, Nitzsche EU, Schelbert HR, Olschewski M, Sayre J, Mix M. et al. Positron emission tomography-measured abnormal responses of myocardial blood flow to sympathetic stimulation are associated with the risk of developing cardiovascular events. J Am Coll Cardiol 2005;45:1505–12.

    Article  PubMed  Google Scholar 

  12. Lerman A, Zeiher AM. Endothelial function: cardiac events. Circulation 2005;111:363–8.

    Article  PubMed  Google Scholar 

  13. Fichtlscherer S, Breuer S, Zeiher AM. Prognostic value of systemic endothelial dysfunction in patients with acute coronary syndromes: further evidence for the existence of the “vulnerable” patient. Circulation 2004;110:1926–32.

    Article  PubMed  Google Scholar 

  14. Modena MG, Bonetti L, Coppi F, Bursi F, Rossi R. Prognostic role of reversible endothelial dysfunction in hypertensive postmenopausal women. J Am Coll Cardiol 2002;40:505–10.

    Article  PubMed  Google Scholar 

  15. Schindler TH, Facta AD, Prior JO, Cadenas J, Hsueh W, Quinones M, et al. Improvement of coronary vascular dysfunction in type 2 diabetic patients with euglycemic control. Heart 2007;93:345–9.

    Article  PubMed  CAS  Google Scholar 

  16. Quinones MJ, Hernandez-Pampaloni M, Schelbert H, Bulnes-Enriquez I, Jimenez X, Hernandez G, et al. Coronary vasomotor abnormalities in insulin-resistant individuals. Ann Intern Med 2004;140:700–8.

    PubMed  Google Scholar 

  17. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027–35.

    Article  PubMed  CAS  Google Scholar 

  18. Sdringola S, Loghin C, Boccalandro F, Gould KL. Mechanisms of progression and regression of coronary artery disease by PET related to treatment intensity and clinical events at long-term follow-up. J Nucl Med 2006;47:59–67.

    PubMed  Google Scholar 

  19. Gould KL. Assessing progression or regression of CAD: the role of perfusion imaging. J Nucl Cardiol 2005;12:625–38.

    Article  PubMed  Google Scholar 

  20. Zeiher AM, Drexler H. Coronary hemodynamic determinants of epicardial artery vasomotor responses during sympathetic stimulation in humans. Basic Res Cardiol 1991;86(Suppl 2):203–13.

    PubMed  Google Scholar 

  21. Zeiher AM, Drexler H, Saurbier B, Just H. Endothelium-mediated coronary blood flow modulation in humans. Effects of age, atherosclerosis, hypercholesterolemia, and hypertension. J Clin Invest 1993;92:652–62.

    Article  PubMed  CAS  Google Scholar 

  22. Zeiher AM, Drexler H, Wollschlager H, Just H. Modulation of coronary vasomotor tone in humans. Progressive endothelial dysfunction with different early stages of coronary atherosclerosis. Circulation 1991;83:391–401.

    PubMed  CAS  Google Scholar 

  23. el-Tamimi H, Mansour M, Pepine CJ, Wargovich TJ, Chen H. Circadian variation in coronary tone in patients with stable angina. Protective role of the endothelium. Circulation 1995;92:3201–5.

    PubMed  CAS  Google Scholar 

  24. Gould KL, Nakagawa Y, Nakagawa K, Sdringola S, Hess MJ, Haynie M, et al. Frequency and clinical implications of fluid dynamically significant diffuse coronary artery disease manifest as graded, longitudinal, base-to-apex myocardial perfusion abnormalities by noninvasive positron emission tomography. Circulation 2000;101:1931–9.

    PubMed  CAS  Google Scholar 

  25. Gould KL, Martucci JP, Goldberg DI, Hess MJ, Edens RP, Latifi R. et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing coronary endothelium. Circulation 1994;89:1530–8.

    PubMed  CAS  Google Scholar 

  26. Hernandez-Pampaloni M, Keng FY, Kudo T, Sayre JS, Schelbert HR. Abnormal longitudinal, base-to-apex myocardial perfusion gradient by quantitative blood flow measurements in patients with coronary risk factors. Circulation 2001;104:527–32.

    Article  PubMed  CAS  Google Scholar 

  27. Schindler TH, Facta AD, Prior JO, Campisi R, Inubushi M, Kreissl MC, et al. PET-measured heterogeneity in longitudinal myocardial blood flow in response to sympathetic and pharmacologic stress as a non-invasive probe of epicardial vasomotor dysfunction. Eur J Nucl Med Mol Imaging 2006;33:1140–9.

    Article  PubMed  Google Scholar 

  28. Wollschlaeger H, Lee P, Zeiher AM, Solzbach U, Just H. Improvement of quantitative angiography by exact calculation of radiological magnification factor. IEEE Comput Cardiol 1985:483–6.

  29. Kuhle WG, Porenta G, Huang SC, Buxton D, Gambhir SS, Hansen H, et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1992;86:1004–17.

    PubMed  CAS  Google Scholar 

  30. Zeiher AM, Drexler H, Wollschlaeger H, Saurbier B, Just H. Coronary vasomotion in response to sympathetic stimulation in humans: importance of the functional integrity of the endothelium. J Am Coll Cardiol 1989;14:1181–90.

    Article  PubMed  CAS  Google Scholar 

  31. Schindler TH, Zhang XL, Cadenas J, Sayre J, Dahlbom M, Schelbert HR. Assessment of intra- and interobserver reproducibility of rest and cold-pressor-test stimulated myocardial blood flow with 13N-ammonia and PET. Eur J Nucl Med Mol Biol 2007;34: 1178–88. Epub 2007 Mar 3.

    Article  Google Scholar 

  32. Siegrist PT, Gaemperli O, Koepfli P, Schepis T, Namdar M, Valenta I, et al. Repeatability of cold pressor test-induced flow increase assessed with H(2)(15)O and PET. J Nucl Med 2006;47:1420–6.

    PubMed  Google Scholar 

  33. Camici PG, Crea F. Coronary microvascular dysfunction. N Engl J Med 2007;356:830–40.

    Article  PubMed  CAS  Google Scholar 

  34. Schindler TH, Zhang XL, Vincenti G, Mhiri L, Lerch R, Schelbert H. Role of PET in the evaluation and understanding of coronary physiology. J Nucl Cardiol. In press 2007.

  35. Buus NH, Bottcher M, Hermansen F, Sander M, Nielsen TT. Mulvany MJ. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia. Circulation 2001;104:2305–10.

    Article  PubMed  CAS  Google Scholar 

  36. Tawakol A, Forgione MA, Stuehlinger M, Alpert NM, Cooke JP, Loscalzo J, et al. Homocysteine impairs coronary microvascular dilator function in humans. J Am Coll Cardiol 2002;40:1051–8.

    Article  PubMed  CAS  Google Scholar 

  37. Bonetti PO, Lerman LO, Lerman A. Endothelial dysfunction: a marker of atherosclerotic risk. Arterioscler Thromb Vasc Biol 2003;23:168–75.

    Article  PubMed  CAS  Google Scholar 

  38. Schachinger V, Zeiher AM. Prognostic implications of endothelial dysfunction: does it mean anything? Coron Artery Dis 2001;12:435–43.

    Article  PubMed  CAS  Google Scholar 

  39. De Bruyne B, Hersbach F, Pijls NH, Bartunek J, Bech JW, Heyndrickx GR, et al. Abnormal epicardial coronary resistance in patients with diffuse atherosclerosis but “normal” coronary angiography. Circulation 2001;104:2401–6.

    Article  PubMed  Google Scholar 

  40. Sdringola S, Patel D, Gould KL. High prevalence of myocardial perfusion abnormalities on positron emission tomography in asymptomatic persons with a parent or sibling with coronary artery disease. Circulation 2001;103:496–501.

    PubMed  CAS  Google Scholar 

  41. Kern MJ. Coronary physiology revisited: practical insights from the cardiac catheterization laboratory. Circulation 2000;101:1344–51.

    PubMed  CAS  Google Scholar 

  42. Drexler H, Zeiher AM, Wollschlager H, Meinertz T, Just H, Bonzel T. Flow-dependent coronary artery dilatation in humans. Circulation 1989;80:466–74.

    PubMed  CAS  Google Scholar 

  43. Cox DA, Vita JA, Treasure CB, Fish RD, Alexander RW, Ganz P, et al. Atherosclerosis impairs flow-mediated dilation of coronary arteries in humans. Circulation 1989;80:458–65.

    PubMed  CAS  Google Scholar 

  44. Victor RG, Leimbach WN Jr, Seals DR, Wallin BG, Mark AL. Effects of the cold pressor test on muscle sympathetic nerve activity in humans Hypertension 1987;9:429–36.

    PubMed  CAS  Google Scholar 

  45. Demaria AN, Ben-Yehuda O, Berman D, Feld GK, Ginsberg J, Greenberg BH, et al. Highlights of the year in JACC 2005. J Am Coll Cardiol 2006;47:184–202.

    Article  PubMed  Google Scholar 

  46. Nabel EG, Ganz P, Gordon JB, Alexander RW, Selwyn AP. Dilation of normal and constriction of atherosclerotic coronary arteris caused by the cold pressor test. Circulation 1988;77:43–52.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas H. Schindler.

Additional information

This work was supported in part by National Institutes of Health grant HL 33177 from the National Heart, Lung, and Blood Institute and by a grant from the government of Baden-Wuerttemberg, Germany, for the Center of Clinical Research II: Cardiovascular Diseases: Analysis and Integration of Form and Function at Albert-Ludwig-University Freiburg (project THS-A1/A2).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schindler, T.H., Zhang, XL., Vincenti, G. et al. Diagnostic value of PET-measured heterogeneity in myocardial blood flows during cold pressor testing for the identification of coronary vasomotor dysfunction. J Nucl Cardiol 14, 688–697 (2007). https://doi.org/10.1016/j.nuclcard.2007.06.120

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2007.06.120

Key Words

Navigation