Skip to main content

Advertisement

Log in

Quantitation of infarct size in patients with chronic coronary artery disease using rest-redistribution tl-201 myocardial perfusion spect: Correlation with contrast-enhanced cardiac magnetic resonance

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Rest and rest-redistribution thallium 201 myocardial perfusion single photon emission computed tomography (SPECT) (MPS) has been incompletely validated in patients for determination of the total amount of scarred myocardium. We sought to determine whether rest or redistribution Tl-201 MPS provides an accurate determination of infarct size as defined by delayed contrast-enhanced cardiac magnetic resonance (CMR).

Methods and Results

We studied patients (n ± 44) with chronic coronary artery disease referred for rest-redistribution Tl-201 MPS, who were also studied by contrast-enhanced CMR within 3 ± 4 days. Patients were considered retrospectively based on a series of patients referred for clinically indicated MPS. Defect size, as a percent of left ventricular mass (% LV), was determined by quantitative perfusion SPECT (QPS) and compared with the volume of delayed hyperenhancement on contrast-enhanced CMR, normalized to LV mass. Infarct size varied from 0% to 43% LV. Rest QPS defect size correlated with the amount of nonviable myocardium assessed by contrast-enhanced CMR (r ± 0.76; mean difference, 4.3% ± 8.0% LV). When delayed thallium data were considered, redistribution QPS was superior to rest QPS for determination of infarct size (redistribution r ± 0.90; mean difference, 2.4% ± 5.2% LV; P ± .03 vs rest).

Conclusion

Rest-redistribution Tl-201 MPS provides a more accurate measurement of total infarct size than rest-only Tl-201 MPS and correlates with contrast-enhanced CMR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gersh BJ, Anderson JL. Thrombolysis and myocardial salvage. Results of clinical trials and the animal paradigm-paradoxic or predictable? Circulation 1993;88:296–306.

    PubMed  CAS  Google Scholar 

  2. Sheifer SE, Gersh BJ, Yanez ND III, Ades PA, Burke GL, Manolio TA. Prevalence, predisposing factors, and prognosis of clinically unrecognized myocardial infarction in the elderly. J Am Coll Cardiol 2000;35:119–26.

    Article  PubMed  CAS  Google Scholar 

  3. Miller TD, Christian TF, Hopfenspirger MR, Hodge DO, Gersh BJ, Gibbons RJ. Infarct size after acute myocardial infarction measured by quantitative tomographic 99mTc sestamibi imaging predicts subsequent mortality. Circulation 1995;92:334–41.

    PubMed  CAS  Google Scholar 

  4. Stone PH, Raabe DS, Jaffe AS, et al. Prognostic significance of location and type of myocardial infarction: independent adverse outcome associated with anterior location. J Am Coll Cardiol 1988;11:453–63.

    PubMed  CAS  Google Scholar 

  5. Berger CJ, Murabito JM, Evans JC, Anderson KM, Levy D. Prognosis after first myocardial infarction. Comparison of Q-wave and non-Q-wave myocardial infarction in the Framingham Heart Study. JAMA 1992;268:1545–51.

    Article  PubMed  CAS  Google Scholar 

  6. Haim M, Hod H, Reisin L, et al. Comparison of short- and long-term prognosis in patients with anterior wall versus inferior or lateral wall non-Q-wave acute myocardial infarction. Secondary Prevention Reinfarction Israeli Nifedipine Trial (SPRINT) Study Group. Am J Cardiol 1997;79:717–21.

    Article  PubMed  CAS  Google Scholar 

  7. Frishman WH, Cheng A. Secondary prevention of myocardial infarction: role of beta-adrenergic blockers and angiotensinconverting enzyme inhibitors. Am Heart J 1999;137:S25–34.

    Article  PubMed  CAS  Google Scholar 

  8. Hjalmarson A, Herlitz J, Holmberg S, et al. The Goteborg metoprolol trial. Effects on mortality and morbidity in acute myocardial infarction. Circulation 1983;67(Pt 2):I26–32.

    PubMed  CAS  Google Scholar 

  9. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med 1981;304:801–7.

  10. Wukasch DC, Hall RJ, Cooley DA, et al. Surgical versus medical treatment of coronary artery disease: long-term survival. Vasc Surg 1976;10:300–14.

    PubMed  CAS  Google Scholar 

  11. Detre KM, Lombardero MS, Brooks MM, et al. The effect of previous coronary-artery bypass surgery on the prognosis of patients with diabetes who have acute myocardial infarction. Bypass Angioplasty Revascularization Investigation Investigators. N Engl J Med 2000;342:989–97.

    Article  PubMed  CAS  Google Scholar 

  12. Eitzman D, al-Aouar Z, Kanter HL, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–65.

    PubMed  CAS  Google Scholar 

  13. Haas F, Haehnel CJ, Picker W, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30:1693–700.

    Article  PubMed  CAS  Google Scholar 

  14. Di Carli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–44.

    Google Scholar 

  15. Altehoefer C, vom Dahl J, Biedermann M, et al. Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine-18-FDG PET. J Nucl Med 1994;35:569–74.

    PubMed  CAS  Google Scholar 

  16. Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease. Comparison of 99mTc-sestamibi with thallium reinjection and [18F]fluorodeoxyglucose. Circulation 1994;89:578–87.

    PubMed  CAS  Google Scholar 

  17. Berman DS, Kiat H, Van Train KF, Friedman J, Garcia EV, Maddahi J. Comparison of SPECT using technetium-99m agents and thallium-201 and PET for the assessment of myocardial perfusion and viability. Am J Cardiol 1990;66:72E-9E.

    Article  PubMed  CAS  Google Scholar 

  18. Prigent FM, Maddahi J, Van Train KF, Berman DS. Comparison of thallium-201 SPECT and planar imaging methods for quantification of experimental myocardial infarct size. Am Heart J 1991; 122:972–9.

    Article  PubMed  CAS  Google Scholar 

  19. Prigent F, Maddahi J, Garcia EV, Resser K, Lew AS, Berman DS. Comparative methods for quantifying myocardial infarct size by thallium-201 SPECT. J Nucl Med 1987;28:325–33.

    PubMed  CAS  Google Scholar 

  20. Prigent F, Maddahi J, Garcia EV, Satoh Y, Van Train K, Berman DS. Quantification of myocardial infarct size by thallium-201 single-photon emission computed tomography: experimental validation in the dog. Circulation 1986;74:852–61.

    PubMed  CAS  Google Scholar 

  21. Slomka PJ, Fieno D, Thomson L, et al. Automatic detection and size quantification of infarcts by myocardial perfusion SPECT: clinical validation by delayed-enhancement MRI. J Nucl Med 2005;46:728–35.

    PubMed  Google Scholar 

  22. Shan K, Constantine G, Sivananthan M, Flamm SD. Role of cardiac magnetic resonance imaging in the assessment of myocardial viability. Circulation 2004;109:1328–34.

    Article  PubMed  Google Scholar 

  23. Edelman RR. Contrast-enhanced MR imaging of the heart: overview of the literature. Radiology 2004;232:653–68.

    Article  PubMed  Google Scholar 

  24. Klein C, Nekolla SG, Bengel FM, et al. Assessment of myocardial viability with contrast-enhanced magnetic resonance imaging: comparison with positron emission tomography. Circulation 2002; 105:162–7.

    Article  PubMed  Google Scholar 

  25. Kuhl HP, Beek AM, van der Weerdt AP, et al. Myocardial viability in chronic ischemic heart disease: comparison of contrast-enhanced magnetic resonance imaging with (18)F-fluorodeoxyglucose positron emission tomography. J Am Coll Cardiol 2003;41:1341–8.

    Article  PubMed  Google Scholar 

  26. Lee VS, Resnick D, Tiu SS, et al. MR imaging evaluation of myocardial viability in the setting of equivocal SPECT results with (99m)Tc sestamibi. Radiology 2004;230:191–7.

    Article  PubMed  Google Scholar 

  27. Mahrholdt H, Wagner A, Holly TA, et al. Reproducibility of chronic infarct size measurement by contrast-enhanced magnetic resonance imaging. Circulation 2002;106:2322–7.

    Article  PubMed  CAS  Google Scholar 

  28. Ibrahim T, Nekolla SG, Hornke M, et al. Quantitative measurement of infarct size by contrast-enhanced magnetic resonance imaging early after acute myocardial infarction: comparison with single-photon emission tomography using Tc99m-sestamibi. J Am Coll Cardiol 2005;45:544–52.

    Article  PubMed  Google Scholar 

  29. Hedstrom E, Palmer J, Ugander M, Arheden H. Myocardial SPECT perfusion defect size compared to infarct size by delayed gadolinium-enhanced magnetic resonance imaging in patients with acute or chronic infarction. Clin Physiol Funct Imaging 2004;24:380–66.

    Article  PubMed  Google Scholar 

  30. Wagner A, Mahrholdt H, Holly TA, et al. Contrast-enhanced MRI and routine single photon emission computed tomography (SPECT) perfusion imaging for detection of subendocardial myocardial infarcts: an imaging study. Lancet 2003;361:374–9.

    Article  PubMed  Google Scholar 

  31. Lund GK, Stork A, Saeed M, et al. Acute myocardial infarction: evaluation with first-pass enhancement and delayed enhancement MR imaging compared with 201Tl SPECT imaging. Radiology 2004;232:49–57.

    Article  PubMed  Google Scholar 

  32. Rozanski A, Berman DS, Gray R, et al. Use of thallium-201 redistribution scintigraphy in the preoperative differentiation of reversible and nonreversible myocardial asynergy. Circulation 1981;64:936–44.

    PubMed  CAS  Google Scholar 

  33. Aboul-Enein F, Kar S, Hayes SW, et al. Influence of angiographic collateral circulation on myocardial perfusion in patients with chronic total occlusion of a single coronary artery and no prior myocardial infarction. J Nucl Med 2004;45:950–5.

    PubMed  Google Scholar 

  34. Berman DS, Germano G. Myocardial perfusion single photon approaches. In: Pohost GM, O’Rourke RA, Berman DS, Shah PM, editors. Imaging in cardiovascular disease. Philadelphia: Lippincott Williams & Wilkins; 2000. p. 159–94.

    Google Scholar 

  35. Simonetti OP, Kim RJ, Fieno DS, et al. An improved MR imaging technique for the visualization of myocardial infarction. Radiology 2001;218:215–23.

    PubMed  CAS  Google Scholar 

  36. Germano G, Kavanagh PB, Berman DS. An automatic approach to the analysis, quantitation and review of perfusion and function from myocardial perfusion SPECT images. Int J Card Imaging 1997;13:337–46.

    Article  PubMed  CAS  Google Scholar 

  37. Germano G, Kavanagh PB, Waechter P, et al. A new algorithm for the quantitation of myocardial perfusion SPECT. I: technical principles and reproducibility. J Nucl Med 2000;41:712–9.

    PubMed  CAS  Google Scholar 

  38. Kang X, Berman DS, Van Train KF, et al. Clinical validation of automatic quantitative defect size in rest technetium-99msestamibi myocardial perfusion SPECT. J Nucl Med 1997;38:1441–66.

    PubMed  CAS  Google Scholar 

  39. Berman DS, Abidov A, Kang X, et al. Prognostic validation of a 17-segment score derived from a 20-segment score for myocardial perfusion SPECT interpretation. J Nucl Cardiol 2004;11:414–23.

    Article  PubMed  Google Scholar 

  40. Edwards WD, Tajik AJ, Seward JB. Standardized nomenclature and anatomic basis for regional tomographic analysis of the heart. Mayo Clin Proc 1981;56:479–97.

    PubMed  CAS  Google Scholar 

  41. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–10.

    PubMed  CAS  Google Scholar 

  42. Fisher RA. On the probable error of a coefficient of correlation deduced from a small sample. Metron 1921;1:3–32.

    Google Scholar 

  43. Gibbons RJ, Miller TD, Christian TF. Infarct size measured by single photon emission computed tomographic imaging with (99m)Tc-sestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation 2000;101:101–8.

    PubMed  CAS  Google Scholar 

  44. Gibbons RJ, Valeti US, Araoz PA, Jaffe AS. The quantification of infarct size. J Am Coll Cardiol 2004;44:1533–42.

    Article  PubMed  Google Scholar 

  45. Passamani E, Davis KB, Gillespie MJ, Killip T. A randomized trial of coronary artery bypass surgery. Survival of patients with a low ejection fraction. N Engl J Med 1985;312:1665–71.

    PubMed  CAS  Google Scholar 

  46. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989; 117:211–21.

    Article  PubMed  CAS  Google Scholar 

  47. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  48. Fieno DS, Kim RJ, Chen EL, Lomasney JW, Klocke FJ, Judd RM. Contrast-enhanced magnetic resonance imaging of myocardium at risk: distinction between reversible and irreversible injury throughout infarct healing. J Am Coll Cardiol 2000;36:1985–991.

    Article  PubMed  CAS  Google Scholar 

  49. Kim RJ, Fieno DS, Parrish TB, et al. Relationship of MRI delayed contrast enhancement to irreversible injury, infarct age, and contractile function. Circulation 1999;100:1992–2002.

    PubMed  CAS  Google Scholar 

  50. Wu KC, Zerhouni EA, Judd RM, et al. Prognostic significance of microvascular obstruction by magnetic resonance imaging in patients with acute myocardial infarction. Circulation 1998; 97:765–72.

    PubMed  CAS  Google Scholar 

  51. Nelson C, McCrohon J, Khafagi F, Rose S, Leano R, Marwick TH. Impact of scar thickness on the assessment of viability using dobutamine echocardiography and thallium single-photon emission computed tomography: a comparison with contrastenhanced magnetic resonance imaging. J Am Coll Cardiol 2004;43:1248–56.

    Article  PubMed  Google Scholar 

  52. Lima JA, Judd RM, Bazille A, Schulman SP, Atalar E, Zerhouni EA. Regional heterogeneity of human myocardial infarcts demonstrated by contrast-enhanced MRI. Potential mechanisms. Circulation 1995;92:1117–25.

    PubMed  CAS  Google Scholar 

  53. Gioia G, Powers J, Heo J, Iskandrian AS. Prognostic value of rest-redistribution tomographic thallium-201 imaging in ischemic cardiomyopathy. Am J Cardiol 1995;75:759–62.

    Article  PubMed  CAS  Google Scholar 

  54. Sharir T, Berman DS, Lewin HC, et al. Incremental prognostic value of rest-redistribution (201)Tl single-photon emission computed tomography. Circulation 1999;100:1964–70.

    PubMed  CAS  Google Scholar 

  55. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–411.

    PubMed  CAS  Google Scholar 

  56. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with chronic coronary artery disease and left ventricular dysfunction. Comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991;83:26–37.

    PubMed  CAS  Google Scholar 

  57. Lawson MA, Johnson LL, Coghlan L, et al. Correlation of thallium uptake with left ventricular wall thickness by cine magnetic resonance imaging in patients with acute and healed myocardial infarcts. Am J Cardiol 1997;80:434–41.

    Article  PubMed  CAS  Google Scholar 

  58. Ansari M, Araoz PA, Gerard SK, et al. Comparison of late enhancement cardiovascular magnetic resonance and thallium SPECT in patients with coronary disease and left ventricular dysfunction. J Cardiovasc Magn Reson 2004;6:549–56.

    Article  PubMed  Google Scholar 

  59. Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988;12:1456–633.

    PubMed  CAS  Google Scholar 

  60. Kitagawa K, Sakuma H, Hirano T, Okamoto S, Makino K, Takeda K. Acute myocardial infarction: myocardial viability assessment in patients early thereafter comparison of contrast-enhanced MR imaging with resting (201)Tl SPECT. Single photon emission computed tomography. Radiology 2003;226:138–44.

    Article  PubMed  Google Scholar 

  61. Petrasinovic Z, Ostojic M, Beleslin B, et al. Prognostic value of myocardial viability determined by a 201Tl SPECT study in patients with previous myocardial infarction and mild-to-moderate myocardial dysfunction. Nucl Med Commun 2003;24:175–81.

    Article  PubMed  CAS  Google Scholar 

  62. Maddahi J, Berman DS. Reverse redistribution of thallium-201. J Nucl Med 1995;36:1019–21.

    PubMed  CAS  Google Scholar 

  63. Weiss AT, Maddahi J, Lew AS, et al. Reverse redistribution of thallium-201: a sign of nontransmural myocardial infarction with patency of the infarct-related coronary artery. J Am Coll Cardiol 1986;7:61–7.

    Article  PubMed  CAS  Google Scholar 

  64. Aboul-Enein FA, Hayes SW, Matsumoto N, Friedman JD, Germano G, Berman DS. Rest perfusion defects in patients with no history of myocardial infarction predict the presence of a critical coronary artery stenosis. J Nucl Cardiol 2003;10:656–62.

    Article  PubMed  Google Scholar 

  65. Amado LC, Gerber BL, Gupta SN, et al. Accurate and objective infarct sizing by contrast-enhanced magnetic resonance imaging in a canine myocardial infarction model. J Am Coll Cardiol 2004;44:2383–99.

    Article  PubMed  Google Scholar 

  66. Hsu LY, Ingkanisorn WP, Kellman P, Aletras AH, Arai AE. Quantitative myocardial infarction on delayed enhancement MRI. Part II: clinical application of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 2006;23:309–14.

    Article  PubMed  Google Scholar 

  67. Hsu LY, Natanzon A, Kellman P, Hirsch GA, Aletras AH, Arai AE. Quantitative myocardial infarction on delayed enhancement MRI. Part I: animal validation of an automated feature analysis and combined thresholding infarct sizing algorithm. J Magn Reson Imaging 2006;23:298–308.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Berman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fieno, D.S., Thomson, L.E.J., Slomka, P. et al. Quantitation of infarct size in patients with chronic coronary artery disease using rest-redistribution tl-201 myocardial perfusion spect: Correlation with contrast-enhanced cardiac magnetic resonance. J Nucl Cardiol 14, 59–67 (2007). https://doi.org/10.1016/j.nuclcard.2006.08.019

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.08.019

Key Words

Navigation