Skip to main content
Log in

Regional heterogeneity of resting perfusion in hypertrophic cardiomyopathy is related to delayed contrast enhancement but not to systolic function: A PET and MRI study

  • Original Article
  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Regional differences in resting myocardial blood flow (MBF) have been observed in patients with hypertrophic cardiomyopathy (HCM), but their determinants are currently unknown. This study verifies whether MBF at rest in HCM is related to delayed contrast enhancement (DCE) or regional systolic function (or both) as determined by magnetic resonance imaging.

Methods and Results

Fourteen patients with HCM were studied. MBF was measured with positron emission tomography by use of oxygen 15-labeled water. DCE and tissue tagging, to calculate end-systolic circumferential shortening (Ecc), were obtained with magnetic resonance imaging. The mean resting MBF was 0.78 ± 0.19 mL . min-1 . mL-1, and there was a trend toward reduced MBF in the septum (0.72 ± 0.11 mL . min-1 . mL-1) compared with that in the lateral wall (0.84 ± 0.29 mL . min-1 . mL-1) (P -.092). The distribution patterns of DCE and Ecc were both heterogeneous, displaying significantly increased enhancement and impaired regional systolic function in the hypertrophic septum compared with the lateral wall (both P < .001). Resting MBF was inversely related to the extent of DCE (r - 0.30, P < .001), whereas MBF was not significantly related to Ecc (r -0.15, P - .072).

Conclusions

Regional heterogeneity of resting perfusion in HCM is related to the extent of DCE but not to regional systolic function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Maron BJ. Hypertrophic cardiomyopathy: a systematic review. JAMA 2002;287:1308–20.

    Article  PubMed  Google Scholar 

  2. Camici P, Chiriatti G, Lorenzoni R, Bellina RC, Gistri R, Italiani G, et al. Coronary vasodilation is impaired in both hypertrophied and nonhypertrophied myocardium of patients with hypertrophic cardiomyopathy: a study with nitrogen-13 ammonia and positron emission tomography. J Am Coll Cardiol 1991;17:879–86.

    PubMed  CAS  Google Scholar 

  3. Cecchi F, Olivotto I, Gistri R, Lorenzoni R, Chiriatti G, Camici PG. Coronary microvascular dysfunction and prognosis in hypertrophic cardiomyopathy. N Engl J Med 2003;349:1027–35.

    Article  PubMed  CAS  Google Scholar 

  4. Knaapen P, van Dockum WG, Bondarenko O, Kok WE, Gotte MJ, Boellaard R, et al. Delayed contrast enhancement and perfusable tissue index in hypertrophic cardiomyopathy: comparison between CMR and PET. J Nucl Med 2005;46:923–9.

    PubMed  Google Scholar 

  5. Nienaber CA, Gambhir SS, Mody FV, Ratib O, Huang SC, Phelps ME, et al. Regional myocardial blood flow and glucose utilization in symptomatic patients with hypertrophic cardiomyopathy. Circulation 1993;87:1580–90.

    PubMed  CAS  Google Scholar 

  6. Grover-McKay M, Schwaiger M, Krivokapich J, Perloff JK, Phelps ME, Schelbert HR. Regional myocardial blood flow and metabolism at rest in mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 1989;13:317–24.

    Article  PubMed  CAS  Google Scholar 

  7. Choudhury L, Rosen SD, Patel D, Nihoyannopoulos P, Camici PG. Coronary vasodilator reserve in primary and secondary left ventricular hypertrophy. A study with positron emission tomography. Eur Heart J 1997;18:108–16.

    PubMed  CAS  Google Scholar 

  8. Jorg-Ciopor M, Namdar M, Turina J, Jenni R, Schwitter J, Turina M, et al. Regional myocardial ischemia in hypertrophic cardiomyopathy: impact of myectomy. J Thorac Cardiovasc Surg 2004;128:163–9.

    Article  PubMed  Google Scholar 

  9. Perrone-Filardi P, Bacharach SL, Dilsizian V, Panza JA, Maurea S, Bonow RO. Regional systolic function, myocardial blood flow and glucose uptake at rest in hypertrophic cardiomyopathy. Am J Cardiol 1993;72:199–204.

    Article  PubMed  CAS  Google Scholar 

  10. Kramer CM, Reichek N, Ferrari VA, Theobald T, Dawson J, Axel L. Regional heterogeneity of function in hypertrophic cardiomyopathy. Circulation 1994;90:186–94.

    PubMed  CAS  Google Scholar 

  11. Maier SE, Fischer SE, McKinnon GC, Hess OM, Krayenbuehl HP, Boesiger P. Evaluation of left ventricular segmental wall motion in hypertrophic cardiomyopathy with myocardial tagging. Circulation 1992;86:1919–28.

    PubMed  CAS  Google Scholar 

  12. Choudhury L, Mahrholdt H, Wagner A, Choi KM, Elliott MD, Klocke FJ, et al. Myocardial scarring in asymptomatic or mildly symptomatic patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2002;40:2156–64.

    Article  PubMed  Google Scholar 

  13. Moon JC, McKenna WJ, McCrohon JA, Elliott PM, Smith GC, Pennell DJ. Toward clinical risk assessment in hypertrophic cardiomyopathy with gadolinium cardiovascular magnetic resonance. J Am Coll Cardiol 2003;41:1561–7.

    Article  PubMed  Google Scholar 

  14. van Dockum WG, ten Cate FJ, ten Berg JM, Beek AM, Twisk JW, Vos J, et al. Myocardial infarction after percutaneous transluminal septal myocardial ablation in hypertrophic obstructive cardiomyopathy: evaluation by contrast-enhanced magnetic resonance imaging. J Am Coll Cardiol 2004;43:27–34.

    Article  PubMed  Google Scholar 

  15. Knaapen P, Boellaard R, Gotte MJ, Dijkmans PA, Van Campen LM, De Cock CC, et al. Perfusable tissue index as a potential marker of fibrosis in patients with idiopathic dilated cardiomyopathy. J Nucl Med 2004;45:1299–304.

    PubMed  Google Scholar 

  16. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP. Human heart: tagging with MR imaging—a method for noninvasive assessment of myocardial motion. Radiology 1988;169:59–63.

    PubMed  CAS  Google Scholar 

  17. Iida H, Kanno I, Takahashi A, Miura S, Murakami M, Takahashi K, et al. Measurement of absolute myocardial blood flow with H215O and dynamic positron-emission tomography. Strategy for quantification in relation to the partial-volume effect. Circulation 1988;78:104–15.

    PubMed  CAS  Google Scholar 

  18. Hermansen F, Rosen SD, Fath-Ordoubadi F, Kooner JS, Clark JC, Camici PG, et al. Measurement of myocardial blood flow with oxygen-15 labelled water: comparison of different administration protocols. Eur J Nucl Med 1998;25:751–9.

    Article  PubMed  CAS  Google Scholar 

  19. van Dockum WG, Beek AM, ten Cate FJ, ten Berg JM, Bondarenko O, Gotte MJ, et al. Early onset and progression of left ventricular remodeling after alcohol septal ablation in hypertrophic obstructive cardiomyopathy. Circulation 2005;111:2503–8.

    Article  PubMed  Google Scholar 

  20. Kaufmann PA, Gnecchi-Ruscone T, Yap JT, Rimoldi O, Camici PG. Assessment of the reproducibility of baseline and hyperemic myocardial blood flow measurements with 15O-labeled water and PET. J Nucl Med 1999;40:1848–56.

    PubMed  CAS  Google Scholar 

  21. Axel L, Goncalves RC, Bloomgarden D. Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology 1992;183:745–50.

    PubMed  CAS  Google Scholar 

  22. Czernin J, Porenta G, Brunken R, Krivokapich J, Chen K, Bennett R, et al. Regional blood flow, oxidative metabolism, and glucose utilization in patients with recent myocardial infarction. Circulation 1993;88:884–95.

    PubMed  CAS  Google Scholar 

  23. Braunwald E. Control of myocardial oxygen consumption: physiologic and clinical considerations. Am J Cardiol 1971;27:416–32.

    Article  PubMed  CAS  Google Scholar 

  24. Ishiwata S, Maruno H, Senda M, Toyama H, Nishiyama S, Seki A. Mechanical efficiency in hypertrophic cardiomyopathy assessed by positron emission tomography with carbon 11 acetate. Am Heart J 1997;133:497–503.

    Article  PubMed  CAS  Google Scholar 

  25. Marinho NV, Keogh BE, Costa DC, Lammerstma AA, Ell PJ, Camici PG. Pathophysiology of chronic left ventricular dysfunction. New insights from the measurement of absolute myocardial blood flow and glucose utilization. Circulation 1996;93:737–44.

    PubMed  CAS  Google Scholar 

  26. Varnava AM, Elliott PM, Sharma S, McKenna WJ, Davies MJ. Hypertrophic cardiomyopathy: the interrelation of disarray, fibrosis, and small vessel disease. Heart 2000;84:476–82.

    Article  PubMed  CAS  Google Scholar 

  27. Moon JCC, Reed E, Sheppard MN, Elkington AG, Ho S, Burke M, et al. The histologic basis of late gadolinium enhancement cardiovascular magnetic resonance in hypertrophic cardiomyopathy. J Am Coll Cardiol 2004;43:2260–4.

    Article  PubMed  Google Scholar 

  28. Papavassiliu T, Schnabel P, Schroder M, Borggrefe M. CMR scarring in a patient with hypertrophic cardiomyopathy correlates well with histological findings of fibrosis. Eur Heart J 2005;26:2395.

    Article  PubMed  Google Scholar 

  29. Aso H, Takeda K, Ito T, Shiraishi T, Matsumura K, Nakagawa T. Assessment of myocardial fibrosis in cardiomyopathic hamsters with gadolinium-DTPA enhanced magnetic resonance imaging. Invest Radiol 1998;33:22–32.

    Article  PubMed  CAS  Google Scholar 

  30. Basso C, Thiene G, Corrado D, Buja G, Melacini P, Nava A. Hypertrophic cardiomyopathy and sudden death in the young: pathologic evidence of myocardial ischemia. Hum Pathol 2000;31:988–98.

    Article  PubMed  CAS  Google Scholar 

  31. Lamke GT, Allen RD, Edwards WD, Tazelaar HD, Danielson GK. Surgical pathology of subaortic septal myectomy associated with hypertrophic cardiomyopathy. A study of 204 cases (1996–2000). Cardiovasc Pathol 2003;12:149–58.

    Article  PubMed  Google Scholar 

  32. Geisterfer-Lowrance AA, Christe M, Conner DA, Ingwall JS, Schoen FJ, Seidman CE, et al. A mouse model of familial hypertrophic cardiomyopathy. Science 1996;272:731–4.

    Article  PubMed  CAS  Google Scholar 

  33. Melacini P, Corbetti F, Bobbo F, Cacciavillani F. Detection of myocardial fibrosis, edema and hypoperfusion in hypertrophic cardiomyopathy by magnetic resonance imaging [abstract]. Circulation Supplements 2004.

  34. Kim RJ, Chen EL, Lima JA, Judd RM. Myocardial Gd-DTPA kinetics determine MRI contrast enhancement and reflect the extent and severity of myocardial injury after acute reperfused infarction. Circulation 1996;94:3318–26.

    PubMed  CAS  Google Scholar 

  35. Uren NG, Melin JA, De Bruyne B, Wijns W, Baudhuin T, Camici PG. Relation between myocardial blood flow and the severity of coronary-artery stenosis. N Engl J Med 1994;330:1782–8.

    Article  PubMed  CAS  Google Scholar 

  36. Di Carli M, Czernin J, Hoh CK, Gerbaudo VH, Brunken RC, Huang SC, et al. Relation among stenosis severity, myocardial blood flow, and flow reserve in patients with coronary artery disease. Circulation 1995;91:1944–51.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Knaapen.

Additional information

Willem G. van Dockum is supported by the Netherlands Heart Foundation (grant 1999B203).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knaapen, P., van Dockum, W.G., Götte, M.J.W. et al. Regional heterogeneity of resting perfusion in hypertrophic cardiomyopathy is related to delayed contrast enhancement but not to systolic function: A PET and MRI study. J Nucl Cardiol 13, 660–667 (2006). https://doi.org/10.1016/j.nuclcard.2006.05.018

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.05.018

Key Words

Navigation