Skip to main content

Advertisement

Log in

The pathobiology of the vessel wall: Implications for imaging

  • Published:
Journal of Nuclear Cardiology Aims and scope

Conclusion

Recent advances in molecular and cell biology have enhanced our understanding of the vascular pathophysiology, leading to the development of many novel therapeutic approaches. However, this progress has been much less represented in our diagnostic approaches to vascular disease, which remains a major cause of morbidity and mortality, not only in developed, but also in developing, countries. A number of factors, some inherent to the vessel wall, impede progress in this direction. The vessel wall is relatively small, less than 1-mm thick (limit of resolution for nuclear imaging) in many cases. The endothelium, the most natural and easily accessible target for imaging given its presence at the interface of the bloodstream and vessel wall, is only 10- to 12-μm thick. Technical challenges raised by the target size are augmented by cardiac motion. As such, any single-modality imaging may lack many technical requirements, and successful vascular imaging may depend on hybrid and/or intravascular imaging. Enhanced uptake, detected by molecular imaging as a hot spot, will need to have an anatomic coregistration system, such as computed tomography or magnetic resonance imaging angiography. Species-specific differences in pathology, prevalent in the case of vascular disease, render translation from animal studies to human beings more difficult and unpredictable. Thus, the challenges facing vascular imagers are enormous, both biological and technical. What is (are) the best imaging target(s) for different phases of the disease? Which animal model best represent the human pathology? Can we start with a stationary target (eg, carotid artery) and then move to coronaries? Can we image coronary arteries noninvasively? Do we need to localize the diseased coronary segment or is the detection of a hot spot sufficient? What is the role of intravascular detection and/or imaging? In the presence of, and perhaps despite, these challenges, improved understanding of the vessel wall biology continues to support the identification and validation of novel molecular imaging targets (or combination of targets) (Table 2), and ultimately will lead to the development of novel diagnostic approaches for the most common vasculopathies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lusis AJ. Atherosclerosis. Nature 2000;407:233–41.

    PubMed  CAS  Google Scholar 

  2. Libby P. Inflammation in atherosclerosis. Nature 2002;420:868–74.

    PubMed  CAS  Google Scholar 

  3. Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005;352:1685–95.

    PubMed  CAS  Google Scholar 

  4. Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002;8:1235–42.

    PubMed  CAS  Google Scholar 

  5. Dzau VJ, Braun-Dullaeus RC, Sedding DG. Vascular proliferation and atherosclerosis: new perspectives and therapeutic strategies. Nat Med 2002;8:1249–56.

    PubMed  CAS  Google Scholar 

  6. Lakatta EG. Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: part III: cellular and molecular clues to heart and arterial aging. Circulation 2003;107:490–7.

    PubMed  Google Scholar 

  7. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyte interactions. Circ Res 2005;97:512–23.

    PubMed  CAS  Google Scholar 

  8. Peters AM. Nuclear medicine in vasculitis. Rheumatology (Oxford) 2000;39:463–70.

    CAS  Google Scholar 

  9. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP III, Herderick EE, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 1999;281:727–35.

    PubMed  CAS  Google Scholar 

  10. Iiyama K, Hajra L, Iiyama M, Li H, DiChiara M, Medoff BD, et al. Patterns of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression in rabbit and mouse atherosclerotic lesions and at sites predisposed to lesion formation. Circ Res 1999;85:199–207.

    PubMed  CAS  Google Scholar 

  11. Skalen K, Gustafsson M, Rydberg EK, Hulten LM, Wiklund O, Innerarity TL, et al. Subendothelial retention of atherogenic lipoproteins in early atherosclerosis. Nature 2002;417:750–4.

    PubMed  CAS  Google Scholar 

  12. van de Stolpe A, van der Saag PT. Intercellular adhesion molecule-1. J Mol Med 1996;74:13–33.

    PubMed  Google Scholar 

  13. Li H, Cybulsky MI, Gimbrone MA Jr, Libby P. An atherogenic diet rapidly induces VCAM-1, a cytokine-regulatable mononuclear leukocyte adhesion molecule, in rabbit aortic endothelium. Arterioscler Thromb 1993;13:197–204.

    PubMed  Google Scholar 

  14. Nakashima Y, Raines EW, Plump AS, Breslow JL, Ross R. Upregulation of VCAM-1 and ICAM-1 at atherosclerosis-prone sites on the endothelium in the ApoE-deficient mouse. Arterioscler Thromb Vasc Biol 1998;18:842–51.

    PubMed  CAS  Google Scholar 

  15. Collins T, Cybulsky MI. NF-kappaB: pivotal mediator or innocent bystander in atherogenesis? J Clin Invest 2001; 107: 255–64.

    PubMed  CAS  Google Scholar 

  16. Salmi M, Jalkanen S. A 90-kilodalton endothelial cell molecule mediating lymphocyte binding in humans. Science 1992;257:1407–9.

    PubMed  CAS  Google Scholar 

  17. Keelan ET, Harrison AA, Chapman PT, Binns RM, Peters AM, Haskard DO. Imaging vascular endothelial activation: an approach using radiolabeled monoclonal antibodies against the endothelial cell adhesion molecule E-selectin. J Nucl Med 1994; 35:276–81.

    PubMed  CAS  Google Scholar 

  18. Chapman PT, Jamar F, Harrison AA, Binns RM, Peters AM, Haskard DO. Noninvasive imaging of E-selectin expression by activated endothelium in urate crystal-induced arthritis. Arthritis Rheum 1994;37:1752–6.

    PubMed  CAS  Google Scholar 

  19. Isobe M, Ohtani H, Yagita H, Okumura K, Strauss HW, Yazaki Y. Detection of cardiac rejection in mice by radioimmune scintigraphy using 123iodine-labeled anti-ICAM-1 monoclonal antibody. Acta Cardiol 1993;48:235–43.

    PubMed  CAS  Google Scholar 

  20. Jaakkola K, Nikula T, Holopainen R, Vahasilta T, Matikainen MT, Laukkanen ML, et al. In vivo detection of vascular adhesion protein-1 in experimental inflammation. Am J Pathol 2000;157:463–71.

    PubMed  CAS  Google Scholar 

  21. Sans M, Fuster D, Vazquez A, Setoain FJ, Piera C, Pique JM, et al. 123Iodine-labelled anti-VCAM-1 antibody scintigraphy in the assessment of experimental colitis. Eur J Gastroenterol Hepatol 2001;13:31–8.

    PubMed  CAS  Google Scholar 

  22. Sadeghi MM, Schechner JS, Krassilnikova S, Gharaei AA, Zhang J, Kirkiles-Smith N, et al. Vascular cell adhesion molecule-1- targeted detection of endothelial activation in human microvasculature. Transplant Proc 2004;36:1585–91.

    PubMed  CAS  Google Scholar 

  23. Nourshargh S, Marelli-Berg FM. Transmigration through venular walls: a key regulator of leukocyte phenotype and function. Trends Immunol 2005;26:157–65.

    PubMed  CAS  Google Scholar 

  24. Gu L, Okada Y, Clinton SK, Gerard C, Sukhova GK, Libby P, et al. Absence of monocyte chemoattractant protein-1 reduces atherosclerosis in low density lipoprotein receptor-deficient mice. Mol Cell 1998;2:275–81.

    PubMed  CAS  Google Scholar 

  25. Boisvert WA, Santiago R, Curtiss LK, Terkeltaub RA. A leukocyte homologue of the IL-8 receptor CXCR-2 mediates the accumulation of macrophages in atherosclerotic lesions of LDL receptor-deficient mice. J Clin Invest 1998;101:353–63.

    PubMed  CAS  Google Scholar 

  26. Lesnik P, Haskell CA, Charo IF. Decreased atherosclerosis in CX3CR1-/- mice reveals a role for fractalkine in atherogenesis. J Clin Invest 2003; 111:333–40.

    PubMed  CAS  Google Scholar 

  27. Subbarao K, Jala VR, Mathis S, Suttles J, Zacharias W, Ahmed J, et al. Role of leukotriene B4 receptors in the development of atherosclerosis: potential mechanisms. Arterioscler Thromb Vasc Biol 2004;24:369–75.

    PubMed  CAS  Google Scholar 

  28. Scheidegger KJ, Butler S, Witztum JL. Angiotensin II increases macrophage-mediated modification of low density lipoprotein via a lipoxygenase-dependent pathway. J Biol Chem 1997;272:21609–15.

    PubMed  CAS  Google Scholar 

  29. Schonbeck U, Sukhova GK, Shimizu K, Mach F, Libby P. Inhibition of CD40 signaling limits evolution of established athero- sclerosis in mice. Proc Natl Acad Sci U S A 2000;97:7458–63.

    PubMed  CAS  Google Scholar 

  30. Katsuda S, Boyd HC, Fligner C, Ross R, Gown AM. Human atherosclerosis. III. Immunocytochemical analysis of the cell composition of lesions of young adults. Am J Pathol 1992; 140:907–14.

    PubMed  CAS  Google Scholar 

  31. Virgolini I, Rauscha F, Lupattelli G, Angelberger P, Ventura A, O’Grady J, et al. Autologous low-density lipoprotein labelling allows characterization of human atherosclerotic lesions in vivo as to presence of foam cells and endothelial coverage. Eur J Nucl Med 1991;18:948–51.

    PubMed  CAS  Google Scholar 

  32. Davies JR, Rudd JF, Fryer TD, Weissberg PL. Targeting the vulnerable plaque: the evolving role of nuclear imaging. J Nucl Cardiol 2005; 12:234–46.

    PubMed  Google Scholar 

  33. Ohtsuki K, Hayase M, Akashi K, Kopiwoda S, Strauss HW. Detection of monocyte chemoattractant protein-1 receptor expression in experimental atherosclerotic lesions: an autoradiographic study. Circulation 2001;104:203–8.

    PubMed  CAS  Google Scholar 

  34. Iuliano L, Signore A, Vallabajosula S, Colarita AR, Camastra C, Ronga G, et al. Reparation and biodistribution of 99m technetium labelled oxidized LDL in man. Atherosclerosis 1996;126:131–41.

    PubMed  CAS  Google Scholar 

  35. Tsimikas S, Palinski W, Halpem SE, Yeung DW, Curtiss LK, Witztum JL. Radiolabeled MDA2, an oxidation-specific, monoclonal antibody, identifies native atherosclerotic lesions in vivo. J Nucl Cardiol 1999;6:41–53.

    PubMed  CAS  Google Scholar 

  36. Venneti S, Lopresti BJ, Wang G, Bissel SJ, Mathis CA, Mettzer CC, et al. PET imaging of brain macrophages using the peripheral benzodiazepine receptor in a macaque model of neuroAIDS. J Clin Invest 2004;113:981–9.

    PubMed  CAS  Google Scholar 

  37. Virmani R, Kolodgie FD, Burke AP, Finn AV, Gold HK, Tulenko TN, et al. Atherosclerotic plaque progression and vulnerability to rupture: angiogenesis as a source of intraplaque hemorrhage. Arterioscler Thromb Vasc Biol 2005;25:2054–61.

    PubMed  CAS  Google Scholar 

  38. Bostrom K. Proinflammatory vascular calcification. Circ Res 2005;96:1219–20.

    PubMed  Google Scholar 

  39. Abedin M, Tintut Y, Demer LL. Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 2004;24:1161–70.

    PubMed  CAS  Google Scholar 

  40. Beckman JA, Ganz J, Creager MA, Ganz P, Kinlay S. Relationship of clinical presentation and calcification of culprit coronary artery stenoses. Arterioscler Thromb Vasc Biol 2001;21:1618–22.

    PubMed  CAS  Google Scholar 

  41. Nadra I, Mason JC, Philippidis P, Florey O, Smythe CD, McCarthy GM, et al. Proinflammatory activation of macrophages by basic calcium phosphate crystals via protein kinase C and MAP kinase pathways: a vicious cycle of inflammation and arterial calcification? Circ Res 2005;96:1248–56.

    PubMed  CAS  Google Scholar 

  42. Alexander MY, Wilkinson FL, Kirton JP, Rock CF, Collett GD, Jeziorska M, et al. Identification and characterization of vascular calcification-associated factor, a novel gene upregulated during vascular calcification in vitro and in vivo. Arterioscler Thromb Vasc Biol 2005;25:1851–7.

    PubMed  CAS  Google Scholar 

  43. Davies MJ, Woolf N, Rowles P, Richardson PD. Lipid and cellular constituents of unstable human aortic plaques. Basic Res Cardiol 1994;89(Suppl):33–9.

    PubMed  CAS  Google Scholar 

  44. Burke AP, Farb A, Malcom GT, Liang YH, Smialek J, Virmani R. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N Engl J Med 1997;336:1276–82.

    PubMed  CAS  Google Scholar 

  45. Visse R, Nagase H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res 2003;92:827–39.

    PubMed  CAS  Google Scholar 

  46. Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer 2002;2:161–74.

    PubMed  CAS  Google Scholar 

  47. Newby AC. Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 2005;85:1–31.

    PubMed  CAS  Google Scholar 

  48. Zempo N, Kenagy RD, Au YP, Bendeck M, Clones MM, Reidy MA, et al. Matrix metalloproteinases of vascular wall cells are increased in balloon-injured rat carotid artery. J Vasc Surg 1994;20:209–17.

    PubMed  CAS  Google Scholar 

  49. Bendeck MP, Zempo N, Clowes AW, Galardy RE, Reidy MA. Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res 1994;75:539–45.

    PubMed  CAS  Google Scholar 

  50. Kuzuya M, Iguchi A. Role of matrix metalloproteinases in vascular remodeling. J Atheroscler Thromb 2003;10:275–82.

    PubMed  CAS  Google Scholar 

  51. Lessner SM, Martinson DE, Galis ZS. Compensatory vascular remodeling during atherosclerotic lesion growth depends on matrix metalloproteinase-9 activity. Arterioscler Thromb Vasc Biol 2004;24:2123–9.

    PubMed  CAS  Google Scholar 

  52. Galis ZS, Khatri JJ. Matrix metalloproteinases in vascular remodeling and atherogenesis: the good, the bad, and the ugly. Circ Res 2002;90:251–62.

    PubMed  CAS  Google Scholar 

  53. Lijnen HR. Plasmin and matrix metalloproteinases in vascular remodeling. Thromb Haemost 2001;86:324–33.

    PubMed  CAS  Google Scholar 

  54. Kolodgie FD, Gold HK, Burke AP, Fowler DR, Kruth HS, Weber DK, et al. Intraplaque hemorrhage and progression of coronary atheroma. N Engl J Med 2003;349:2316–25.

    PubMed  CAS  Google Scholar 

  55. Felton CV, Crook D, Davies MJ, Oliver MF. Relation of plaque lipid composition and morphology to the stability of human aortic plaques. Arterioscler Thromb Vasc Biol 1997;17:1337–45.

    PubMed  CAS  Google Scholar 

  56. Kolodgie FD, Burke AP, Wight TN, Virmani R. The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture. Curr Opin Lipidol 2004;15:575–82.

    PubMed  CAS  Google Scholar 

  57. Salvesen GS, Dixit VM. Caspases: intracellular signaling by proteolysis. Cell 1997;91:443–6.

    PubMed  CAS  Google Scholar 

  58. Ashkenazi A. Targeting death and decoy receptors of the tumour- necrosis factor superfamily. Nat Rev Cancer 2002;2:420–30.

    PubMed  CAS  Google Scholar 

  59. Matsuda A, Suzuki Y, Kondo K, Ikeda Y, Umemura K. Hypercholesterolemia induces regression in neointimal thickening due to apoptosis of vascular smooth muscle cells in the hamster endothelial injury model. Cardiovasc Res 2002;53:512–23.

    PubMed  CAS  Google Scholar 

  60. Kolodgie FD, Narula J, Haider N, Virmani R. Apoptosis in atherosclerosis. Does it contribute to plaque instability? Cardiol Clin 2001;19:127–39, ix.

    CAS  Google Scholar 

  61. Bjorkerud S, Bjorkerud B. Apoptosis is abundant in human atherosclerotic lesions, especially in inflammatory cells (macrophages and T cells), and may contribute to the accumulation of gruel and plaque instability. Am J Pathol 1996; 149:367–80.

    PubMed  CAS  Google Scholar 

  62. Kolodgie FD, Narula J, Burke AP, Haider N, Farb A, Hui-Liang Y, et al. Localization of apoptotic macrophages at the site of plaque rupture in sudden coronary death. Am J Pathol 2000; 157:1259–68.

    PubMed  CAS  Google Scholar 

  63. Lefkovits J, Plow EF, Topol EJ. Platelet glycoprotein IIb/IIIa receptors in cardiovascular medicine. N Engl J Med 1995;332:1553–9.

    PubMed  CAS  Google Scholar 

  64. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, et al. Imaging atherosclerotic plaque inflammation with [18F]-fluorodeoxyglucose positron emission tomography. Circulation 2002;105:2708–11.

    PubMed  CAS  Google Scholar 

  65. Ogawa M, Ishino S, Mukai T, Asano D, Teramoto N, Watabe H, et al. (18)F-FDG accumulation in atherosclerotic plaques: immunohistochemical and PET imaging study. J Nucl Med 2004;45:1245–50.

    PubMed  CAS  Google Scholar 

  66. Tawakol A, Migrino RQ, Hoffmann U, Abbara S, Houser S, Gewirtz H, et al. Noninvasive in vivo measurement of vascular inflammation with F-18 fluorodeoxyglucose positron emission tomography. J Nucl Cardiol 2005; 12:294–301.

    PubMed  Google Scholar 

  67. Arbustini E, Grasso M, Diegoli M, Pucci A, Bramerio M, Ardissino D, et al. Coronary atherosclerotic plaques with and without thrombus in ischemic heart syndromes: a morphologic, immunohistochemical, and biochemical study. Am J Cardiol 1991;68:36B-50B.

    PubMed  CAS  Google Scholar 

  68. Madjid M, Zarrabi A, Litovsky S, Willerson JT, Casscells W. Finding vulnerable atherosclerotic plaques: is it worth the effort? Arterioscler Thromb Vasc Biol 2004;24:1775–82.

    PubMed  CAS  Google Scholar 

  69. Glagov S, Weisenberg E, Zarins CK, Stankunavicius R, Kolettis GJ. Compensatory enlargement of human atherosclerotic coronary arteries. N Engl J Med 1987;316:1371–5.

    PubMed  CAS  Google Scholar 

  70. Langille BL. Arterial remodeling: relation to hemodynamics. Can J Physiol Pharmacol 1996;74:834–41.

    PubMed  CAS  Google Scholar 

  71. Smits PC, Pasterkamp G, de Jaegere PP, de Feyter PJ, Borst C. Angioscopic complex lesions are predominantly compensatory enlarged: an angioscopy and intracoronary ultrasound study. Cardiovasc Res 1999;41:458–64.

    PubMed  CAS  Google Scholar 

  72. Schoenhagen P, Ziada KM, Kapadia SR, Crowe TD, Nissen SE, Tuzcu EM. Extent and direction of arterial remodeling in stable versus unstable coronary syndromes: an intravascular ultrasound study. Circulation 2000;101:598–603.

    PubMed  CAS  Google Scholar 

  73. Di Mario C, Gil R, Camenzind E, Ozaki Y, von Birgelen C, Umans V, et al. Quantitative assessment with intracoronary ultrasound of the mechanisms of restenosis after percutaneous transluminal coronary angioplasty and directional coronary atherectomy. Am J Cardiol 1995;75:772–7.

    PubMed  Google Scholar 

  74. Mintz GS, Popma JJ, Pichard AD, Kent KM, Satler LF, Wong C, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 1996;94:35–43.

    PubMed  CAS  Google Scholar 

  75. Shi Y, Pieniek M, Fard A, O’Brien J, Mannion JD, Zalewski A. Adventitial remodeling after coronary arterial injury. Circulation 1996;93:340–8.

    PubMed  CAS  Google Scholar 

  76. Zalewski A, Shi Y. Vascular myofibroblasts. Lessons from coronary repair and remodeling. Arterioscler Thromb Vasc Biol 1997;17:417–22.

    PubMed  CAS  Google Scholar 

  77. Wilcox JN, Okamoto EI, Nakahara KI, Vinten-Johansen J. Perivascular responses after angioplasty which may contribute to postangioplasty restenosis: a role for circulating myofibroblast precursors? Ann N Y Acad Sci 2001;947:68–92.

    PubMed  CAS  Google Scholar 

  78. Godin D, Ivan E, Johnson C, Magid R, Galis ZS. Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation 2000;102:2861–6.

    PubMed  CAS  Google Scholar 

  79. Bendeck MP, Irvin C, Reidy MA. Inhibition of matrix metalloproteinase activity inhibits smooth muscle cell migration but not neointimal thickening after arterial injury. Circ Res 1996;78:38–43.

    PubMed  CAS  Google Scholar 

  80. Lindner V, Reidy MA. Proliferation of smooth muscle cells after vascular injury is inhibited by an antibody against basic fibroblast growth factor. Proc Natl Acad Sci U S A 1991;88:3739–43.

    PubMed  CAS  Google Scholar 

  81. Ferns GA, Raines EW, Sprugel KH, Motani AS, Reidy MA, Ross R. Inhibition of neointimal smooth muscle accumulation after angioplasty by an antibody to PDGF. Science 1991;253:1129–32.

    PubMed  CAS  Google Scholar 

  82. Owens GK. Regulation of differentiation of vascular smooth muscle cells. Physiol Rev 1995;75:487–517.

    PubMed  CAS  Google Scholar 

  83. Hayashi K, Saga H, Chimori Y, Kimura K, Yamanaka Y, Sobue K. Differentiated phenotype of smooth muscle cells depends on signaling pathways through insulin-like growth factors and phosphatidylinositol 3-kinase. J Biol Chem 1998;273:28860–7.

    PubMed  CAS  Google Scholar 

  84. Shanahan CM, Weissberg PL. Smooth muscle cell heterogeneity: patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 1998;18:333–8.

    PubMed  CAS  Google Scholar 

  85. Clowes AW, Clowes MM, Kocher O, Ropraz P, Chaponnier C, Gabbiani G. Arterial smooth muscle cells in vivo: relationship between actin isoform expression and mitogenesis and their modulation by heparin. J Cell Biol 1988;107:1939–45.

    PubMed  CAS  Google Scholar 

  86. Kovach NL, Carlos TM, Yee E, Harlan JM. A monoclonal antibody to beta 1 integrin (CD29) stimulates VLA-dependent adherence of leukocytes to human umbilical vein endothelial cells and matrix components. J Cell Biol 1992;116:499–509.

    PubMed  CAS  Google Scholar 

  87. Humphries MJ. Integrin activation: the link between ligand binding and signal transduction. Curr Opin Cell Biol 1996;8:632–40.

    PubMed  CAS  Google Scholar 

  88. Shattil SJ. Function and regulation of the beta 3 integrins in hemostasis and vascular biology. Thromb Haemost 1995;74:149–55.

    PubMed  CAS  Google Scholar 

  89. Murphy JF, Bordet JC, Wyler B, Rissoan MC, Chomarat P, Defrance T, et al. The vitronectin receptor (alpha v beta 3) is implicated, in cooperation with P-selectin and platelet-activating factor, in the adhesion of monocytes to activated endothelial cells. Biochem J 1994;304:537–42.

    PubMed  CAS  Google Scholar 

  90. Huang S, Endo RI, Nemerow GR. Upregulation of integrins alpha v beta 3 and alpha v beta 5 on human monocytes and T lymphocytes facilitates adenovirus-mediated gene delivery. J Virol 1995;69:2257–63.

    PubMed  CAS  Google Scholar 

  91. Moiseeva EP. Adhesion receptors of vascular smooth muscle cells and their functions. Cardiovasc Res 2001;52:372–86.

    PubMed  CAS  Google Scholar 

  92. Kanda S, Kuzuya M, Ramos MA, Koike T, Yoshino K, Ikeda S, et al. Matrix metalloproteinase and alphavbeta3 integrin-dependent vascular smooth muscle cell invasion through a type I collagen lattice. Arterioscler Thromb Vasc Biol 2000; 20:998–1005.

    PubMed  CAS  Google Scholar 

  93. Stouffer GA, Hu Z, Sajid M, Li H, Jin G, Nakada MT, et al. Beta3 integrins are upregulated after vascular injury and modulate thrombospondin- and thrombin-induced proliferation of cultured smooth muscle cells. Circulation 1998;97:907–15.

    PubMed  CAS  Google Scholar 

  94. Srivatsa SS, Fitzpatrick LA, Tsao PW, Reilly TM, Holmes DR Jr. Schwartz RS, et al. Selective alpha v beta 3 integrin blockade potently limits neointimal hyperplasia and lumen stenosis following deep coronary arterial stent injury: evidence for the functional importance of integrin alpha v beta 3 and osteopontin expression during neointima formation. Cardiovasc Res 1997;36:408–28.

    PubMed  CAS  Google Scholar 

  95. Sadeghi MM, Krassilnikova S, Zhang J, Gharaei AA, Fassaei HR, Esmailzadeh L, et al. Detection of injury-induced vascular remodeling by targeting activated alphavbeta3 integrin in vivo. Circulation 2004;110:84–90.

    PubMed  CAS  Google Scholar 

  96. Hoshiga M, Alpers CE, Smith LL, Giachelli CM, Schwartz SM. Alpha-v beta-3 integrin expression in normal and atherosclerotic artery. Circ Res 1995;77:1129–35.

    PubMed  CAS  Google Scholar 

  97. Sajid M, Stouffer GA. The role of alpha(v)beta3 integrins in vascular healing. Thromb Haemost 2002;87:187–93.

    PubMed  CAS  Google Scholar 

  98. Johnson LL, Schofield LM, Verdesca SA, Sharaf BL, Jones RM, Virmani R, et al. In vivo uptake of radiolabeled antibody to proliferating smooth muscle cells in a swine model of coronary stent restenosis. J Nucl Med 2000;41:1535–40.

    PubMed  CAS  Google Scholar 

  99. Schafers M, Riemann B, Kopka K, Breyholz HJ, Wagner S, Schafers KP, et al. Scintigraphic imaging of matrix metalloproteinase activity in the arterial wall in vivo. Circulation 2004; 109:2554–9.

    PubMed  Google Scholar 

  100. Zhang J, Kiassilnikova S, Gharaei AA, Fassaei HR, Esmailzadeh L, Asadi A, et al. Alphavbeta3-targeted detection of arteriopathy in transplanted human coronary arteries: an autoradiographic study. FASEB J 2005;19:1857–9.

    PubMed  CAS  Google Scholar 

  101. Su H, Spinale FG, Dobrucki LW, Song J, Hua J, Sweterlitsch S, et al. Non-invasive targeted imaging of matrix metalloproteinase activation in a murine model of post-infarct remodeling. Circulation 2005;112:3157–67.

    PubMed  CAS  Google Scholar 

  102. Libby P, Pober JS. Chronic rejection. Immunity 2001; 14:387–97.

    PubMed  CAS  Google Scholar 

  103. Lim TT, Liang DH, Botas J, Schroeder JS, Oesterle SN, Yeung AC. Role of compensatory enlargement and shrinkage in transplant coronary artery disease. Serial intravascular ultrasound study. Circulation 1997;95:855–9.

    PubMed  CAS  Google Scholar 

  104. Schwarzacher SP, Uren NG, Ward MR, Schwartzkopf A, Giannetti N, Hunt S, et al. Determinants of coronary remodeling in transplant coronary disease: a simultaneous intravascular ultrasound and Doppler flow study. Circulation 2000;101(12):1384–9.

    PubMed  CAS  Google Scholar 

  105. Isselbacher EM. Thoracic and abdominal aortic aneurysms. Circulation 2005;111:816–28.

    PubMed  Google Scholar 

  106. Wassef M, Baxter BT, Chisholm RL, Dalman RL, Fillinger MF, Heinecke J, et al. Pathogenesis of abdominal aortic aneurysms: a multidisciplinary research program supported by the National Heart, Lung, and Blood Institute. J Vasc Surg 2001;34:730–8.

    PubMed  CAS  Google Scholar 

  107. Davies MJ. Aortic aneurysm formation: lessons from human studies and experimental models. Circulation 1998;98:193–5.

    PubMed  CAS  Google Scholar 

  108. Rowe VL, Stevens SL, Reddick TT, Freeman MB, Donnell R, Carroll RC, et al. Vascular smooth muscle cell apoptosis in aneurysmal, occlusive, and normal human aortas. J Vasc Surg 2000;31:567–76.

    PubMed  CAS  Google Scholar 

  109. Silence J, Lupu F, Collen D, Lijnen HR. Persistence of atherosclerotic plaque but reduced aneurysm formation in mice with stromelysin-1 (MMP-3) gene inactivation. Arterioscler Thromb Vasc Biol 2001;21:1440–5.

    PubMed  CAS  Google Scholar 

  110. Taketani T, Imai Y, Morota T, Maemura K, Morita H, Hayashi D, et al. Altered patterns of gene expression specific to thoracic aortic aneurysms: microarray analysis of surgically resected specimens. Int Heart J 2005;46:265–77.

    PubMed  CAS  Google Scholar 

  111. Longo GM, Buda SJ, Fiotta N, Xiong W, Griener T, Shapiro S, et al. MMP-12 has a role in abdominal aortic aneurysms in mice. Surgery 2005;137:457–62.

    PubMed  Google Scholar 

  112. Yajima N, Masuda M, Miyazaki M, Nakajima N, Chien S, Shyy JY. Oxidative stress is involved in the development of experimental abdominal aortic aneurysm: a study of the transcription profile with complementary DNA microarray. J Vasc Surg 2002; 36:379–85.

    PubMed  Google Scholar 

  113. Miller FJ Jr, Sharp WJ, Fang X, Oberley LW, Oberley TD, Weintraub NL. Oxidative stress in human abdominal aortic aneurysms: a potential mediator of aneurysmal remodeling. Arterioscler Thromb Vasc Biol 2002;22:560–5.

    PubMed  CAS  Google Scholar 

  114. Zhao L, Moos MP, Grabner R, Pedrono F, Fan J, Kaiser B, et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlip- idemia-dependent aortic aneurysm. Nat Med 2004;10:966–73.

    PubMed  CAS  Google Scholar 

  115. Endemann DH, Schiffrin EL. Endothelial dysfunction. J Am Soc Nephrol 2004;15:1983–92.

    PubMed  CAS  Google Scholar 

  116. Brownlee M, Cerami A, Vlassara H. Advanced glycosylation end products in tissue and the biochemical basis of diabetic complications. N Engl J Med 1988;318:1315–21.

    PubMed  CAS  Google Scholar 

  117. Schmidt AM, Vianna M, Gerlach M, Brett J, Ryan J, Kao J, et al. Isolation and characterization of two binding proteins for advanced glycosylation end products from bovine lung which are present on the endothelial cell surface. J Biol Chem 1992;267:14987–97.

    PubMed  CAS  Google Scholar 

  118. Neeper M, Schmidt AM, Brett J, Yan SD, Wang F, Pan YC, et al. Cloning and expression of a cell surface receptor for advanced glycosylation end products of proteins. J Biol Chem 1992;267:14998–5004.

    PubMed  CAS  Google Scholar 

  119. Wautier JL, Wautier MP, Schmidt AM, Anderson GM, Hori O, Zoukourian C, et al. Advanced glycation end products (AGEs) on the surface of diabetic erythrocytes bind to the vessel wall via a specific receptor inducing oxidant stress in the vasculature: a link between surface-associated AGEs and diabetic complications. Proc Natl Acad Sci U S A 1994;91:7742–6.

    PubMed  CAS  Google Scholar 

  120. Schmidt AM, Hori O, Chen JX, Li JF, Crandall J, Zhang J, et al. Advanced glycation endproducts interacting with their endothelial receptor induce expression of vascular cell adhesion molecule-1 (VCAM-1) in cultured human endothelial cells and in mice. A potential mechanism for the accelerated vasculopathy of diabetes. J Clin Invest 1995;96:1395–403.

    PubMed  CAS  Google Scholar 

  121. Pasceri V, Willerson JT, Yeh ET. Direct proinflammatory effect of C-reactive protein on human endothelial cells. Circulation 2000;102:2165–8.

    PubMed  CAS  Google Scholar 

  122. Pasceri V, Cheng JS, Willerson JT, Yeh ET. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation 2001;103:2531–4.

    PubMed  CAS  Google Scholar 

  123. Verma S, Wang CH, Li SH, Dumont AS, Fedak PW, Badiwala MV, et al. A self-fulfilling prophecy: C-reactive protein attenuates nitric oxide production and inhibits angiogenesis. Circulation 2002;106:913–9.

    PubMed  CAS  Google Scholar 

  124. Piao D, Sadeghi MM, Zhang J, Chen Y, Sinusas AJ, Zhu Q. Hybrid positron detection and optical coherence tomography system: design, calibration, and experimental validation with rabbit atherosclerotic models. J Biomed Opt 2005;10:44010.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehran M. Sadeghi.

Additional information

Supported by grants from the National Institutes of Health (P01 HL70295-01), American Heart Association (0435053), and Department of Veterans Affairs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadeghi, M.M. The pathobiology of the vessel wall: Implications for imaging. J Nucl Cardiol 13, 402–414 (2006). https://doi.org/10.1016/j.nuclcard.2006.03.012

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.03.012

Keywords

Navigation