Skip to main content
Log in

Monitoring chemotherapy-induced cardiotoxicity: Role of cardiac nuclear imaging

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Cardiotoxicity may result from a range of chemotherapeutic agents. The prevalence of cardiotoxicity from certain cytotoxic agents is reported to be significantly high. In addition to serious side effects and increased long-lasting morbidity and mortality, dose limitation and suboptimal usage is an important adverse effect. Nuclear cardiac imaging has played a quintessential and important role in identifying patients at risk and in the prevention and reduction of cardiac injury resulting from cytotoxic agents. Despite exploring a number of other diagnostic imaging or biochemical tools for identification of cardiac injury, nuclear cardiac imaging in the form of radionuclide angiocardiography continues to be the most suitable and cost-effective tool for reducing the prevalence of cases of cardiac dysfunction resulting from chemotherapy. This article reviews the prevalence, mechanisms, and prevention strategies for cardiotoxicity associated with some of the commonly known cytotoxic agents and the role of nuclear cardiac imaging in its monitoring and prevention, along with recent advances in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Yeh ET, Tong AT, Lenihan DJ, Yusuf SW, Swafford J, Champion C, et al. Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 2004; 109:3122–31.

    PubMed  Google Scholar 

  2. Meinardi MT, Gietema JA, van Veldhuisen DJ, van der Graaf WT, de Vries EG, Sleijfer DT. Long-term chemotherapy-related cardiovascular morbidity. Cancer Treat Rev 2000;26:429–47.

    PubMed  CAS  Google Scholar 

  3. Schultz PN, Beck ML, Stava C, Vassilopoulou-Sellin R. Health profiles in 5836 long-term cancer survivors. Int J Cancer 2003; 104:488–95.

    PubMed  CAS  Google Scholar 

  4. Hortobagyi GN. Anthracyclines in the treatment of cancer. An overview. Drugs 1997;54(Suppl 4):1–7.

    PubMed  CAS  Google Scholar 

  5. Weiss RB. The anthracyclines: will we ever find a better doxorubicin? Semin Oncol 1992; 19:670–86.

    PubMed  CAS  Google Scholar 

  6. Singal PK, Iliskovic N. Doxorubicin-induced cardiomyopathy. N Engl J Med 1998;339:900–5.

    PubMed  CAS  Google Scholar 

  7. Grenier MA, Lipshultz SE. Epidemiology of anthracycline cardiotoxicity in children and adults. Semin Oncol 1998;25:72–85.

    PubMed  CAS  Google Scholar 

  8. Swain SM, Whaley FS, Ewer MS. Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 2003;97:2869–79.

    PubMed  CAS  Google Scholar 

  9. Steinherz LJ, Steinherz PG, Tan CT, Heller G, Murphy ML. Cardiac toxicity 4 to 20 years after completing anthracycline therapy. JAMA 1991;266:1672–7.

    PubMed  CAS  Google Scholar 

  10. Postma A, Bink-Boelkens MT, Beaufort-Krol GC, Kengen RA, Elzenga NJ, Schasfoort-van Leeuwen MJ, et al. Late cardiotoxicity after treatment for a malignant bone tumor. Med Pediatr Oncol 1996;26:230–7.

    PubMed  CAS  Google Scholar 

  11. Von Hoff DD, Layard MW, Basa P, Davis HL Jr, Von Hoff AL, Rozencweig M, et al. Risk factors for doxorubicin-induced congestive heart failure. Ann Intern Med 1979;91:710–7.

    Google Scholar 

  12. Lipshultz SE, Giantris AL, Lipsitz SR, Kimball Dalton V, Asselin BL, Barr RD, et al. Doxorubicin administration by continuous infusion is not cardioprotective: the Dana-Farber 91-01 Acute Lymphoblastic Leukemia protocol. J Clin Oncol 2002;20:1677–82.

    PubMed  CAS  Google Scholar 

  13. Legha SS, Benjamin RS, Mackay B, Ewer M, Wallace S, Valdivieso M, et al. Reduction of doxorubicin cardiotoxicity by prolonged continuous intravenous infusion. Ann Intern Med 1982;96:133–9.

    PubMed  CAS  Google Scholar 

  14. Lipshultz SE, Lipsitz SR, Mone SM, Goorin AM, Sallan SE, Sanders SP, et al. Female sex and drug dose as risk factors for late cardiotoxic effects of doxorubicin therapy for childhood cancer. N Engl J Med 1995;332:1738–43.

    PubMed  CAS  Google Scholar 

  15. Krischer JP, Epstein S, Cuthbertson DD, Goorin AM, Epstein ML, Lipshultz SE. Clinical cardiotoxicity following anthracycline treatment for childhood cancer: the Pediatric Oncology Group experience. J Clin Oncol 1997;15:1544–52.

    PubMed  CAS  Google Scholar 

  16. Kinsella TJ, Ahmann DL, Giuliani ER, Lie JT. Adriamycin cardiotoxicity in stage IV breast cancer: possible enhancement with prior left chest radiation therapy. Int J Radiat Oncol Biol Phys 1979;5:1997–2002.

    PubMed  CAS  Google Scholar 

  17. Gehl J, Boesgaard M, Paaske T, Vittrup Jensen B, Dombernowsky P. Combined doxorubicin and paclitaxel in advanced breast cancer: effective and cardiotoxic. Ann Oncol 1996;7:687–93.

    PubMed  CAS  Google Scholar 

  18. Tan-Chiu E, Yothers G, Romond E, Geyer CE Jr, Ewer M, Keefe D, et al. Assessment of cardiac dysfunction in a randomized trial comparing doxorubicin and cyclophosphamide followed by paclitaxel, with or without trastuzumab as adjuvant therapy in node-positive, human epidermal growth factor receptor 2-overexpressing breast cancer: NSABP B-31. J Clin Oncol 2005;23:7811–9.

    PubMed  CAS  Google Scholar 

  19. Minow RA, Benjamin RS, Lee ET, Gottlieb JA. Adriamycin cardiomyopathy—risk factors. Cancer 1977;39:1397–402.

    PubMed  CAS  Google Scholar 

  20. Lipshultz SE, Rifai N, Dalton VM, Levy DE, Silverman LB, Lipsitz SR, et al. The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia. N Engl J Med 2004;351:145–53.

    PubMed  CAS  Google Scholar 

  21. de Graaf H, Dolsma WV, Willemse PH, van der Graaf WT, Sleijfer DT, de Vries EG, et al. Cardiotoxicity from intensive chemotherapy combined with radiotherapy in breast cancer. Br J Cancer 1997;76:943–5.

    PubMed  Google Scholar 

  22. Zhou S, Starkov A, Froberg MK, Leino RL, Wallace KB. Cumulative and irreversible cardiac mitochondrial dysfunction induced by doxorubicin. Cancer Res 2001;61:771–7.

    PubMed  CAS  Google Scholar 

  23. Shadle SE, Bammel BP, Cusack BJ, Knighton RA, Olson SJ, Mushlin PS, et al. Daunorubicin cardiotoxicity: evidence for the importance of the quinone moiety in a free-radical-independent mechanism. Biochem Pharmacol 2000;60:1435–44.

    PubMed  CAS  Google Scholar 

  24. Halili-Rutman I, Hershko C, Link G, Rutman AJ, Shainberg A. Inhibition of calcium accumulation by the sarcoplasmic reticulum: a putative mechanism for the cardiotoxicity of adriamycin. Biochem Pharmacol 1997;54:211–4.

    PubMed  CAS  Google Scholar 

  25. Rajagopalan S, Politi PM, Sinha BK, Myers CE. Adriamycin-induced free radical formation in the perfused rat heart: implications for cardiotoxicity. Cancer Res 1988;48:4766–9.

    PubMed  CAS  Google Scholar 

  26. Hershko C, Pinson A, Link G. Prevention of anthracycline cardiotoxicity by iron chelation. Acta Haematol 1996;95:87–92.

    PubMed  CAS  Google Scholar 

  27. Panjrath GS, Patel V, Narula N, Valdiviezo CI, Narula J, Jain D. Potentiation of doxorubicin cardiotoxicity by iron loading in a rodent model [abstract]. J Am Coll Cardiol 2005;45:182A.

    Google Scholar 

  28. Doroshow JH, Locker GY, Myers CE. Enzymatic defenses of the mouse heart against reactive oxygen metabolites: alterations produced by doxorubicin. J Clin Invest 1980;65:128–35.

    PubMed  CAS  Google Scholar 

  29. Dorr RT. Cytoprotective agents for anthracyclines. Semin Oncol 1996;23:23–34.

    PubMed  CAS  Google Scholar 

  30. Dragojevic-Simic VM, Dobric SL, Bokonjic DR, Vucinic ZM, Sinovec SM, Jacevic VM, et al. Amifostine protection against doxorubicin cardiotoxicity in rats. Anticancer Drugs 2004;15:169–78.

    PubMed  CAS  Google Scholar 

  31. Jahnukainen K, Jahnukainen T, Salmi TT, Svechnikov K, Eksborg S, Soder O. Amifostine protects against early but not late toxic effects of doxorubicin in infant rats. Cancer Res 2001;61:6423–7.

    PubMed  CAS  Google Scholar 

  32. Villani F, Galimberti M, Monti E, Piccinini F, Lanza E, Rozza A, et al. Effect of glutathione and N-acetylcysteine on in vitro and in vivo cardiac toxicity of doxorubicin. Free Radic Res Commun 1990;11:145–51.

    PubMed  CAS  Google Scholar 

  33. Siveski-Iliskovic N, Hill M, Chow DA, Singal PK. Probucol protects against adriamycin cardiomyopathy without interfering with its antitumor effect. Circulation 1995;91:10–5.

    PubMed  CAS  Google Scholar 

  34. Li T, Singal PK. Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation 2000;102:2105–10.

    PubMed  CAS  Google Scholar 

  35. Kumar D, Kirshenbaum LA, Li T, Danelisen I, Singal PK. Apoptosis in adriamycin cardiomyopathy and its modulation by probucol. Antioxid Redox Signal 2001;3:135–45.

    PubMed  CAS  Google Scholar 

  36. Andrieu-Abadie N, Jaffrezou JP, Hatem S, Laurent G, Levade T, Mercadier JJ. L-carnitine prevents doxorubicin-induced apoptosis of cardiac myocytes: role of inhibition of ceramide generation. FASEB J 1999;13:1501–10.

    PubMed  CAS  Google Scholar 

  37. Hong YM, Kim HS, Yoon HR. Serum lipid and fatty acid profiles in adriamycin-treated rats after administration of L-carnitine. Pediatr Res 2002;51:249–55.

    PubMed  CAS  Google Scholar 

  38. Kawasaki N, Lee J, Shimizu H, Ueda T. Long-term 1-carnitine treatment prolongs the survival in rats with adriamycin-induced heart failure. J Card Fail 1996;2:293–9.

    PubMed  CAS  Google Scholar 

  39. Speyer JL, Green MD, Kramer E, Rey M, Sanger J, Ward C, et al. Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer. N Engl J Med 1988;319:745–52.

    PubMed  CAS  Google Scholar 

  40. Hochster HS. Clinical pharmacology of dexrazoxane. Semin Oncol 1998;25:37–42.

    PubMed  CAS  Google Scholar 

  41. Malisza KL, Hasinoff BB. Inhibition of anthracycline semiquinone formation by ICRF-187 (dexrazoxane) in cells. Free Radic Biol Med 1996;20:905–14.

    PubMed  CAS  Google Scholar 

  42. Schuchter LM, Hensley ML, Meropol NJ, Winer EP. 2002 Update of recommendations for the use of chemotherapy and radiotherapy protectants: Clinical Practice Guidelines of the American Society of Clinical Oncology. J Clin Oncol 2002;20:2895–903.

    PubMed  Google Scholar 

  43. Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, et al. Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 1997;15:1318–32.

    PubMed  CAS  Google Scholar 

  44. Wexler LH, Andrich MP, Venzon D, Berg SL, Weaver-McClure L, Chen CC, et al. Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with doxorubicin. J Clin Oncol 1996; 14:362–72.

    PubMed  CAS  Google Scholar 

  45. van Dalen EC, Caron HN, Dickinson HO, Kremer LC. Cardioprotective interventions for cancer patients receiving anthracyclines. Cochrane Database Syst Rev 2005:CD003917.

  46. Noori A, Lindenfeld J, Wolfel E, Ferguson D, Bristow MR. Lowes BD. Beta-blockade in adriamycin-induced cardiomyopathy. J Card Fail 2000;6:115–9.

    PubMed  CAS  Google Scholar 

  47. Spallarossa P, Garibaldi S, Altieri P, Fabbi P, Manca V, Nasti S, et al. Carvedilol prevents doxorubicin-induced free radical release and apoptosis in cardiomyocytes in vitro. J Mol Cell Cardiol 2004;37:837–46.

    PubMed  CAS  Google Scholar 

  48. Vaynblat M, Shah HR, Bhaskaran D, Ramdev G, Davis WJ 3rd, Cunningham JN Jr, et al. Simultaneous angiotensin converting enzyme inhibition moderates ventricular dysfunction caused by doxorubicin. Eur J Heart Fail 2002;4:583–6.

    PubMed  CAS  Google Scholar 

  49. Valero V, Buzdar AU, Theriault RL, Azamia N, Fonseca GA, Willey J, et al. Phase II trial of liposome-encapsulated doxorubicin, cyclophosphamide, and fluorouracil as first-line therapy in patients with metastatic breast cancer. J Clin Oncol 1999;17:1425–34.

    PubMed  CAS  Google Scholar 

  50. Berry G, Billingham M, Alderman E, Richardson P, Torti F, Lum B, et al. The use of cardiac biopsy to demonstrate reduced cardiotoxicity in AIDS Kaposi’s sarcoma patients treated with pegylated liposomal doxorubicin. Ann Oncol 1998;9:711–6.

    PubMed  CAS  Google Scholar 

  51. Working PK, Newman MS, Sullivan T, Yarrington J. Reduction of the cardiotoxicity of doxorubicin in rabbits and dogs by encapsulation in long-circulating, pegylated liposomes. J Pharmacol Exp Ther 1999;289:1128–33.

    PubMed  CAS  Google Scholar 

  52. Kanter PM, Klaich G, Bullard GA, King JM, Pavelic ZP. Preclinical toxicology study of liposome encapsulated doxorubicin (TLC D-99) given intraperitoneally to dogs. In Vivo 1994;8:975–82.

    PubMed  CAS  Google Scholar 

  53. Kanter PM, Bullard GA, Ginsberg RA, Pilkiewicz FG, Mayer LD, Cullis PR, et al. Comparison of the cardiotoxic effects of liposomal doxorubicin (TLC D-99) versus free doxorubicin in beagle dogs. In Vivo 1993;7:17–26.

    PubMed  CAS  Google Scholar 

  54. O’Brien ME, Wigler N, Inbar M, Rosso R, Grischke E, Santoro A, et al. Reduced cardiotoxicity and comparable efficacy in a phase III trial of pegylated liposomal doxorubicin HCl (CAELYX/Doxil) versus conventional doxorubicin for first-line treatment of metastatic breast cancer. Ann Oncol 2004;15:440–9.

    PubMed  CAS  Google Scholar 

  55. Safra T, Muggia F, Jeffers S, Tsao-Wei DD, Groshen S, Lyass O, et al. Pegylated liposomal doxorubicin (doxil): reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann Oncol 2000;11:1029–33.

    PubMed  CAS  Google Scholar 

  56. Gabizon AA, Lyass O, Berry GJ, Wildgust M. Cardiac safety of pegylated liposomal doxorubicin (Doxil/Caelyx) demonstrated by endomyocardial biopsy in patients with advanced malignancies. Cancer Invest 2004;22:663–9.

    PubMed  CAS  Google Scholar 

  57. Nair R, Ramakrishnan G, Nair NN, Saikia TK, Parikh PM, Joshi SR, et al. A randomized comparison of the efficacy and toxicity of epirubicin and doxorubicin in the treatment of patients with non-Hodgkin’s lymphoma. Cancer 1998;82:2282–8.

    PubMed  CAS  Google Scholar 

  58. Nielsen OS, Dombernowsky P, Mouridsen H, Crowther D, Verweij J, Buesa J, et al. High-dose epirubicin is not an alternative to standard-dose doxorubicin in the treatment of advanced soft tissue sarcomas. A study of the EORTC soft tissue and bone sarcoma group. Br J Cancer 1998;78:1634–9.

    PubMed  CAS  Google Scholar 

  59. Schrijvers D, Bos AM, Dyck J, de Vries EG, Wanders J, Roelvink M, et al. Phase I study of MEN-10755, a new anthracycline in patients with solid tumours: a report from the European Organization for Research and Treatment of Cancer, Early Clinical Studies Group. Ann Oncol 2002;13:385–91.

    PubMed  CAS  Google Scholar 

  60. Henderson IC, Allegra JC, Woodcock T, Wolff S, Bryan S, Cartwright K, et al. Randomized clinical trial comparing mitoxantrone with doxorubicin in previously treated patients with metastatic breast cancer. J Clin Oncol 1989;7:560–71.

    PubMed  CAS  Google Scholar 

  61. Caponigro F, Willemse P, Sorio R, Floquet A, van Belle S, Demol J, et al. A phase II study of sabarubicin (MEN-10755) as second line therapy in patients with locally advanced or metastatic platinum/taxane resistant ovarian cancer. Invest New Drugs 2005;23:85–9.

    PubMed  CAS  Google Scholar 

  62. Torti FM, Bristow MM, Lum BL, Carter SK, Howes AE, Aston DA, et al. Cardiotoxicity of epirubicin and doxorubicin: assessment by endomyocardial biopsy. Cancer Res 1986;46:3722–7.

    PubMed  CAS  Google Scholar 

  63. Bristow MR, Mason JW, Billingham ME, Daniels JR. Dose- effect and structure-function relationships in doxorubicin cardiomyopathy. Am Heart J 1981;102:709–18.

    PubMed  CAS  Google Scholar 

  64. Druck MN, Gulenchyn KY, Evans WK, Gotlieb A, Srigley JR, Bar-Shlomo BZ, et al. Radionuclide angiography and endomyocardial biopsy in the assessment of doxorubicin cardiotoxicity. Cancer 1984;53:1667–74.

    PubMed  CAS  Google Scholar 

  65. Isner JM, Ferrans VJ, Cohen SR, Witkind BG, Virmani R, Gottdiener JS, et al. Clinical and morphologic cardiac findings after anthracycline chemotherapy. Analysis of 64 patients studied at necropsy. Am J Cardiol 1983;51:1167–74.

    PubMed  CAS  Google Scholar 

  66. Piver MS, Marchetti DL, Parthasarathy KL, Bakshi S, Reese P. Doxorubicin hydrochloride (Adriamycin) cardiotoxicity evaluated by sequential radionuclide angiocardiography. Cancer 1985; 56:76–80.

    PubMed  CAS  Google Scholar 

  67. Ritchie JL, Singer JW, Thoming D, Sorensen SG, Hamilton GW. Anthracycline cardiotoxicity: clinical and pathologic outcomes assessed by radionuclide ejection fraction. Cancer 1980;46:1109–16.

    PubMed  CAS  Google Scholar 

  68. Alexander J, Dainiak N, Berger HJ, Goldman L, Johnstone D, Reduto L, et al. Serial assessment of doxorubicin cardiotoxicity with quantitative radionuclide angiocardiography. N Engl J Med 1979;300:278–83.

    PubMed  CAS  Google Scholar 

  69. Choi BW, Berger HJ, Schwartz PE, Alexander J, Wackers FJ, Gottschalk A, et al. Serial radionuclide assessment of doxorubicin cardiotoxicity in cancer patients with abnormal baseline resting left ventricular performance. Am Heart J 1983; 106:638–43.

    PubMed  CAS  Google Scholar 

  70. Schwartz R, Zaret B. Diagnosis and treatment of drug induced myocardial disease. In: Muggia FC SJ, editor. Cardiotoxicity of anticancer therapy. 1st ed. Baltimore: Johns Hopkins University Press; 1992. p. 173–97.

    Google Scholar 

  71. Schwartz RG, McKenzie WB, Alexander J, Sager P, D’Souza A, Manatunga A, et al. Congestive heart failure and left ventricular dysfunction complicating doxorubicin therapy. Seven-year experience using serial radionuclide angiocardiography. Am J Med 1987;82:1109–18.

    PubMed  CAS  Google Scholar 

  72. Palmeri ST, Bonow RO, Myers CE, Seipp C, Jenkins J, Green MV, et al. Prospective evaluation of doxorubicin cardiotoxicity by rest and exercise radionuclide angiography. Am J Cardiol 1986;58:607–13.

    PubMed  CAS  Google Scholar 

  73. Gottdiener JS, Mathisen DJ, Borer JS, Bonow RO, Myers CE, Barr LH, et al. Doxorubicin cardiotoxicity: assessment of late left ventricular dysfunction by radionuclide cineangiography. Ann Intern Med 1981;94:430–5.

    PubMed  CAS  Google Scholar 

  74. Gibbons RJ, Lee KL, Cobb F, Jones RH. Ejection fraction response to exercise in patients with chest pain and normal coronary arteriograms. Circulation 1981;64:952–7.

    PubMed  CAS  Google Scholar 

  75. Stoddard MF, Seeger J, Liddell NE, Hadley TJ, Sullivan DM, Kupersmith J. Prolongation of isovolumetric relaxation time as assessed by Doppler echocardiography predicts doxorubicin-induced systolic dysfunction in humans. J Am Coll Cardiol 1992;20:62–9.

    PubMed  CAS  Google Scholar 

  76. Schmitt K, Tulzer G, Merl M, Aichhorn G, Grillenberger A, Wiesinger G, et al. Early detection of doxorubicin and daunorubicin cardiotoxicity by echocardiography: diastolic versus systolic parameters. Eur J Pediatr 1995;154:201–4.

    PubMed  CAS  Google Scholar 

  77. Ganz WI, Sridhar KS, Forness TJ. Detection of early anthracycline cardiotoxicity by monitoring the peak filling rate. Am J Clin Oncol 1993;16:109–12.

    PubMed  CAS  Google Scholar 

  78. Cottin Y, Touzery C, Coudert B, Gilles A, Walker P, Massing JL, et al. Impairment of diastolic function during short-term anthracycline chemotherapy. Br Heart J 1995;73:61–4.

    PubMed  CAS  Google Scholar 

  79. Mitani I, Jain D, Joska TM, Burtness B, Zaret BL. Doxorubicin cardiotoxicity: prevention of congestive heart failure with serial cardiac function monitoring with equilibrium radionuclide angiocardiography in the current era. J Nucl Cardiol 2003;10:132–9.

    PubMed  Google Scholar 

  80. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, et al. Comparison of echocardiography and radionuclide ventriculography in the follow-up of left ventricular systolic function in adult lymphoma patients during doxorubicin therapy. J Intern Med 2001;249:297–303.

    PubMed  CAS  Google Scholar 

  81. Wakasugi S, Fischman AJ, Babich JW, Aretz HT, Callahan RJ, Nakaki M, et al. Metaiodobenzylguanidine: evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med 1993;34:1283–6.

    PubMed  CAS  Google Scholar 

  82. Wakasugi S, Wada A, Hasegawa Y, Nakano S, Shibata N. Detection of abnormal cardiac adrenergic neuron activity in adriamycin- induced cardiomyopathy with iodine-125-metaiodobenzylguanidine. J Nucl Med 1992;33:208–14.

    PubMed  CAS  Google Scholar 

  83. Carrio I, Estorch M, Bema L, Lopez-Pousa J, Tabemero J, Tones G. Indium-111-antimyosin and iodine-123-MIBG studies in early assessment of doxorubicin cardiotoxicity. J Nucl Med 1995;36:2044–9.

    PubMed  CAS  Google Scholar 

  84. Lekakis J, Prassopoulos V, Athanassiadis P, Kostamis P, Moulopoulos S. Doxorubicin-induced cardiac neurotoxicity: study with iodine 123-labeled metaiodobenzylguanidine scintigraphy. J Nucl Cardiol 1996;3:37–41.

    PubMed  CAS  Google Scholar 

  85. Takano H, Ozawa H, Kobayashi I, Hamaoka S, Nakajima J, Nakamura T, et al. Myocardial sympathetic dysinnervation in doxorubicin cardiomyopathy. J Cardiol 1996;27:49–55.

    PubMed  CAS  Google Scholar 

  86. Estorch M, Canio I, Bema L, Martinez-Duncker C, Alonso C, Germa JR, et al. Indium-111-antimyosin scintigraphy after doxorubicin therapy in patients with advanced breast cancer. J Nucl Med 1990;31:1965–9.

    PubMed  CAS  Google Scholar 

  87. Carrio I, Lopez-Pousa A, Estorch M, Duncker D, Berna L, Tones G, et al. Detection of doxorubicin cardiotoxicity in patients with sarcomas by indium-111-antimyosin monoclonal antibody studies. J Nucl Med 1993;34:1503–7.

    PubMed  CAS  Google Scholar 

  88. Jain D, Zaret BL. Antimyosin cardiac imaging: will it play a role in the detection of doxorubicin cardiotoxicity? J Nucl Med 1990;31:1970–4.

    PubMed  CAS  Google Scholar 

  89. Narula J, Strauss HW, Khaw BA. Antimyosin positivity in doxorubicin cardiotoxicity: earlier than the conventional evidence. J Nucl Med 1993;34:1507–9.

    PubMed  CAS  Google Scholar 

  90. Maini CL, Sciuto R, Ferraironi A, Vici P, Tofani A, Festa A, et al. Clinical relevance of radionuclide angiography and antimyosin immunoscintigraphy for risk assessment in epirubicin cardiotoxicity. J Nucl Cardiol 1997;4:502–8.

    PubMed  CAS  Google Scholar 

  91. Arola OJ, Saraste A, Pulkki K, Kallajoki M, Parvinen M, Voipio-Pulkki LM. Acute doxorubicin cardiotoxicity involves cardiomyocyte apoptosis. Cancer Res 2000;60:1789–92.

    PubMed  CAS  Google Scholar 

  92. Nakamura T, Ueda Y, Juan Y, Katsuda S, Takahashi H, Koh E. Fas-mediated apoptosis in adriamycin-induced cardiomyopathy in rats: in vivo study. Circulation 2000;102:572–8.

    PubMed  CAS  Google Scholar 

  93. Bennink RJ, van den Hoff MJ, van Hemert FJ, de Bruin KM, Spijkerboer AL, Vanderheyden JL, et al. Annexin V imaging of acute doxorubicin cardiotoxicity (apoptosis) in rats. J Nucl Med 2004;45:842–8.

    PubMed  CAS  Google Scholar 

  94. Panjrath GS, Hartung D, Petrov A, Narula N, Patel V, Liu Z, et al. Increased Tc-99m-Annexin uptake in doxorubicin induced myocardial apoptosis [abstract]. J Am Coll Cardiol 2003;41:444.

    Google Scholar 

  95. Panjrath GS, Patel V, Narula N, Narula J, Jain D. Doxorubicin cardiotoxicity in a rodent model of iron overload: assessment using Tc-99m-annexin [abstract]. J Nucl Cardiol 2005; 12:S14.

    Google Scholar 

  96. Herman EH, Zhang J, Lipshultz SE, Rifai N, Chadwick D, Takeda K, et al. Correlation between serum levels of cardiac troponin-T and the severity of the chronic cardiomyopathy induced by doxorubicin. J Clin Oncol 1999;17:2237–43.

    PubMed  CAS  Google Scholar 

  97. Lipshultz SE, Rifai N, Sallan SE, Lipsitz SR, Dalton V, Sacks DB, et al. Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 1997;96:2641–8.

    PubMed  CAS  Google Scholar 

  98. Kismet E, Varan A, Ayabakan C, Alehan D, Portakal O, Buyukpamukcu M. Serum troponin T levels and echocardiographic evaluation in children treated with doxorubicin. Pediatr Blood Cancer 2004;42:220–4.

    PubMed  Google Scholar 

  99. Mathew P, Suarez W, Kip K, Bayar E, Jasty R, Matloub Y, et al. Is there a potential role for serum cardiac troponin I as a marker for myocardial dysfunction in pediatric patients receiving anthracycline- based therapy? A pilot study. Cancer Invest 2001;19:352–9.

    PubMed  CAS  Google Scholar 

  100. Sparano JA, Brown DL, Wolff AC. Predicting cancer therapy-induced cardiotoxicity: the role of troponins and other markers. Drug Saf 2002;25:301–11.

    PubMed  CAS  Google Scholar 

  101. Nousiainen T, Jantunen E, Vanninen E, Remes J, Vuolteenaho O, Hartikainen J. Natriuretic peptides as markers of cardiotoxicity during doxorubicin treatment for non-Hodgkin’s lymphoma. Eur J Haematol 1999;62:135–41.

    PubMed  CAS  Google Scholar 

  102. Nousiainen T, Vanninen E, Jantunen E, Puustinen J, Remes J, Rantala A, et al. Natriuretic peptides during the development of doxorubicin-induced left ventricular diastolic dysfunction. J Intern Med 2002;251:228–34.

    PubMed  CAS  Google Scholar 

  103. Suzuki T, Hayashi D, Yamazaki T, Mizuno T, Kanda Y, Komuro I, et al. Elevated B-type natriuretic peptide levels after anthracycline administration. Am Heart J 1998; 136:362–3.

    PubMed  CAS  Google Scholar 

  104. Valdes Olmos RA, ten Bokkel Huinink WW, ten Hoeve RF, van Tinteren H, Bruning PF, van Vlies B, et al. Assessment of anthracycline-related myocardial adrenergic derangement by [123i]metaiodobenzylguanidine scintigraphy. Eur J Cancer 1995; 31:26–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gurusher Singh Panjrath.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panjrath, G.S., Jain, D. Monitoring chemotherapy-induced cardiotoxicity: Role of cardiac nuclear imaging. J Nucl Cardiol 13, 415–426 (2006). https://doi.org/10.1016/j.nuclcard.2006.03.002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.03.002

Key Words

Navigation