Skip to main content

Advertisement

Log in

Myocardial perfusion imaging with adenosine triphosphate predicts the rate of cardiovascular events

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Adenosine triphosphate (ATP) has effects similar to adenosine, including a very short half-life, with the advantage of a much lower cost. Our aim was to evaluate whether myocardial single photon emission computed tomography (SPECT) with ATP can predict the rate of hard events.

Methods and Results

We studied 299 patients (188 men; mean age, 64 ± 10 years) with known or suspected coronary disease with thallium 201 SPECT during ATP infusion and at rest. Perfusion defects were divided into the following: absent/mild reversible, moderate/severe reversible, and mixed/fixed. During a maximum follow-up of 87 months (mean, 32.7 ± 20.3 months), the rate of cardiovascular events was studied. The prognostic value of different variables that can influence survival was calculated with the Cox proportional hazards model. The total number of cardiovascular events was 115 (43 hard events). The annual rate of hard events according to type of perfusion defect was 3.44% (95% confidence interval [CI], 2.12–5.26) for absent/mild reversible, 6.06% (95% CI, 2.23–13.20) for moderate/severe reversible, and 15.12% (95% CI, 8.64–24.55) for mixed/fixed. In the Cox model the variables that significantly predicted hard events were age greater than 55 years (P = .0293), diabetes (P = .0036), and severe perfusion defects (P = .0008).

Conclusion

ATP can be used for pharmacologic stress testing. SPECT with ATP has a stronger correlation with the rate of hard events than clinical variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Beller GA. First annual Mario S. Verani, MD, memorial lecture: clinical value of myocardial perfusion imaging in coronary artery disease. J Nucl Cardiol 2003; 10:529–42.

    Article  PubMed  Google Scholar 

  2. Iskandrian AS, Heo J, Lemlek J, Ogilby JD, Untereker WJ, Iskandrian B, et al. Identification of high-risk patients with left main and three-vessel coronary artery disease by adenosine-single photon emission computed tomographic thallium imaging. Am Heart J 1993;125:1130–5.

    Article  PubMed  CAS  Google Scholar 

  3. Taillefer R, Amyot R, Turpin S, Lambert R, Pilon C, Jarry M. Comparison between dipyridamole and adenosine as pharmacologic coronary vasodilators in detection of coronary artery disease with thallium 201 imaging. J Nucl Cardiol 1996;3:204–11.

    Article  PubMed  CAS  Google Scholar 

  4. Belhassen B, Pelleg A. Electrophysiologic effects of adenosine triphosphate and adenosine on the mammalian heart: clinical and experimental aspects. J Am Coll Cardiol 1984;4:414–24.

    PubMed  CAS  Google Scholar 

  5. Ballo P, Bemabo D, Faraguti SA. Heart rate is a predictor of success in the treatment of adults with symptomatic paroxysmal supraventricular tachycardia. Eur Heart J 2004;25:1277–8.

    Article  Google Scholar 

  6. Watanabe K, Sekiya M, Ikeda S, Miyagawa M, Kinoshita M, Kumano S. Comparison of adenosine triphosphate and dipyridamole in diagnosis by thallium-201 myocardial scintigraphy. J Nucl Med 1997;38:577–81.

    PubMed  CAS  Google Scholar 

  7. Miyagawa M, Kumano S, Sekiya M, Watanabe K, Akutzu H, Imachi T, et al. Thallium-201 myocardial tomography with intravenous infusion of adenosine triphosphate in diagnosis of coronary artery disease. J Am Coll Cardiol 1995;26:1196–201.

    Article  PubMed  CAS  Google Scholar 

  8. Shoyeb A, Bokhari S, Sullivan J, Hurley E, Miesner B, Pia R, et al. Value of definitive diagnostic testing in the evaluation of patients presenting to the emergency department with chest pain. Am J Cardiol 2003;91:1410–4.

    Article  PubMed  Google Scholar 

  9. Bravo N, Giménez M, Mejía S, García-Velloso MJ, Coma-Canella I. Prognostic value of myocardial perfusion imaging with adenosine triphosphate. J Nucl Cardiol 2002;9:395–401.

    Article  PubMed  Google Scholar 

  10. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr, et al.; National Heart, Lung, and Blood Institute Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure; National High Blood Ressuie Education Program Coordinating Committee. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003;289:2560–71.

    Article  PubMed  CAS  Google Scholar 

  11. American Diabetes Association. Standards of medical care for patients with diabetes mellitus. Diabetes Care 2002;25(Suppl 1): S33–49.

    Google Scholar 

  12. Myocardial infarction redefined—a consensus document of the Joint European Society of Cardiology/American College of Cardiology Committee for the Redefinition of Myocardial Infarction. Eur Heart J 2000;21:1502–13.

    Google Scholar 

  13. Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation 2002;105:539–42.

    Article  PubMed  Google Scholar 

  14. Anagnostopoulos C, Harbinson M, Kelion A, Kundley K, Loong CY, Notghi A, et al. Procedure guidelines for radionuclide myocardial perfusion imaging. Heart 2004;90(Suppl 1):i1–10.

    Article  PubMed  Google Scholar 

  15. Kurata C, Tawarahara K, Taguchi T, Sakata K, Yamazaki N, Naitoh Y. Lung thallium-201 uptake during exercise emission computer tomography. J Nucl Med 1991;32:417–23.

    PubMed  CAS  Google Scholar 

  16. Westfall PH, Wolfinger RD. Multiple tests with discrete distributions. Am Stat 1997;51:3–8.

    Article  Google Scholar 

  17. Cleland OS, Kjekshus RM, Dickstein D. Recurrent infarction causes the most deaths following myocardial infarction with left ventricular dysfunction. Am J Med 2005;118:752–8.

    Article  PubMed  Google Scholar 

  18. Amanullah AM. Diagnostic and prognostic value of myocardial perfusion imaging in patients with known or suspected stable coronary artery disease. Echocardiography 2000;17:587–95.

    Article  PubMed  CAS  Google Scholar 

  19. Beller GA, Zaret BL. Contributions of nuclear cardiology to diagnosis and prognosis of patients with coronary artery disease. Circulation 2000;101:1465–78.

    PubMed  CAS  Google Scholar 

  20. Shaw L, Miller DD, Kong BA, Hilton T, Stelken A, Stocke K, et al. Determination of perioperative cardiac risk by adenosine thallium-201 myocardial imaging. Am Heart J 1992;124:861–9.

    Article  PubMed  CAS  Google Scholar 

  21. Sanders GP, Pinto DS, Parker JA, Koutkia P, Aepfelbacher FC, Danias PG. Increased resting Tl-201 lung-to-heart ratio is associated with invasively determined measures of left ventricular dysfunction, extent of coronary artery disease, and resting myocardial perfusion abnormalities. J Nucl Cardiol 2003;10:140–7.

    Article  PubMed  Google Scholar 

  22. Kaminek M, Myslivecek M, Skvarilova M, Husak V, Koranda P, Metelkova I, et al. Increased prognostic value of combined myocardial perfusion SPECT imaging and the quantification of lung T1-201 uptake. Clin Nucl Med 2002;27:255–60.

    Article  PubMed  Google Scholar 

  23. Nishimura S, Mahmarian JJ, Verani MS. Significance of increased lung thallium uptake during adenosine thallium-201 scintigraphy. J Nucl Med 1992;33:1600–7.

    PubMed  CAS  Google Scholar 

  24. Maceira AM, Cabrera A, Albaladejo VJ, Garcia Velloso MJ, Richter JA, Coma-Canella I. Thallium-201 uptake in lung and heart with different types of stress. Study in healthy volunteers [in Spanish]. Rev Esp Med Nucl 1999;18:197–203.

    PubMed  CAS  Google Scholar 

  25. Shaw LJ, Iskandrian AE. Prognostic value of gated myocardial perfusion SPECT. J Nucl Cardiol 2004;11:171–85.

    Article  PubMed  Google Scholar 

  26. Calnon DA, McGrath PD, Doss AL, Harrell FE, Watson DD, Beller GA. Prognostic value of dobutamine stress technetium- 99m-sestamibi single-photon emission computed tomography myocardial perfusion imaging: stratification of a high-risk population. J Am Coll Cardiol 2001;38:1511–7.

    Article  PubMed  CAS  Google Scholar 

  27. Yonezawa Y, Yoshikawa J, Shakudo M, Okumachi F, Shiratori K, Koizumi K, et al. Adenosine triphosphate loading thallium-201 myocardial scintigraphy: optimal dose and diagnostic accuracy [in Japanese]. J Cardiol 1995;25:9–13.

    PubMed  CAS  Google Scholar 

  28. He Q, Yao Z, Yu X, Qu W, Sun F, Ji F, et al. Evaluation of (99m)Tc-MIBI myocardial perfusion imaging with intravenous infusion of adenosine triphosphate in diagnosis of coronary artery disease. Chin Med J (Engl) 2002;115:1603–7.

    CAS  Google Scholar 

  29. Miyazono Y, Kisanuki A, Toyonaga K, Matsushita R, Otsuji Y, Arima S, et al. Usefulness of adenosine triphosphate-atropine stress echocardiography for detecting coronary artery stenosis. Am J Cardiol 1998;82:290–4.

    Article  PubMed  CAS  Google Scholar 

  30. Cerqueira MD, Verani MS, Schwaiger M, Heo J, Iskandrian AS. Safety profile of adenosine stress perfusion imaging: results from the Adenoscan Multicenter Trial Registry. J Am Coll Cardiol 1994;23:384–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Coma-Canella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coma-Canella, I., Palazuelos, J., Bravo, N. et al. Myocardial perfusion imaging with adenosine triphosphate predicts the rate of cardiovascular events. J Nucl Cardiol 13, 316–323 (2006). https://doi.org/10.1016/j.nuclcard.2006.02.010

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.02.010

Key Words

Navigation