Skip to main content
Log in

Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

Background

Hypertension-induced left ventricular hypertrophy (LVH) is associated with an increased risk of cardiovascular morbidity and death by mechanisms not well characterized.

Methods and Results

Myocardial fatty acid (FA) metabolism and left ventricular (LV) mass were evaluated in 13 patients with hypertensive LVH with normal LV ejection fraction and 42 normal control subjects (primary cohort). Contractile performance was also evaluated in 5 hypertensive LVH patients and 5 matched normal control subjects (magnetic resonance [MR] substudy). Myocardial FA utilization (MFAU) and myocardial FA oxidation (MFAO) were assessed by positron emission tomography by use of 1-carbon-11 palmitate. Myocardial contractile function (strain and stress) was determined by cardiac MR imaging with tissue tagging and calibrated arterial pressure traces; myocardial external minute work and efficiency were derived. In the primary cohort decreased MFAO was predictive of increased LV mass (model r 2 = 0.61, P = .03). In the MR substudy decreased MFAO (corrected for myocardial oxygen consumption [MVO2]) in the hypertensive LVH group compared with the normal group (MFAU/MVO2, 26 ± 5 vs 37 ± 8; MFAO/MVO2, 24 ± 6 vs 35 ± 7; both P = .03) was paralleled by decreased myocardial external minute work (0.13 ± 0.03 J · g-1 · min-1 vs 0.17 ± 0.04 J · g-1 · min-1, P = .07) and decreased myocardial efficiency (5.2% ± 1.4% vs 7.1% ± 1.0%, P = .03).

Conclusions

Abnormalities in myocardial FA metabolism are apparent in hypertensive LVH, and these abnormalities may be responsible, at least in part, for a reduction in myocardial efficiency. (J Nucl Cardiol 2006;13:369-77.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension in the United States 1999 to 2000: a rising tide. Hypertension 2004;44:398–404.

    Article  PubMed  CAS  Google Scholar 

  2. Yonekura Y, Brill AB, Som P, Yamamoto K, Srivastava SC, Iwai J, et al. Regional myocardial substrate uptake in hypertensive rats: a quantitative autoradiographic measurement. Science 1985;227: 1494–6.

    Article  PubMed  CAS  Google Scholar 

  3. Taegtmeyer H, Overturf ML. Effects of moderate hypertension on cardiac function and metabolism in the rabbit. Hypertension 1988;11:416–26.

    PubMed  CAS  Google Scholar 

  4. Kagaya Y, Kanno Y, Takeyama D, Ishide N, Maruyama Y, Takahashi T, et al. Effects of long-term pressure overload on regional myocardial glucose and free fatty acid uptake in rats. A quantitative autoradiographic study. Circulation 1990;81:1353–61.

    PubMed  CAS  Google Scholar 

  5. Sack MN, Harrington LS, Jonassen AK, Mjos OD, Yellon DM. Coordinate regulation of metabolic enzyme encoding genes during cardiac development and following carvedilol therapy in spontaneously hypertensive rats. Cardiovasc Drugs Ther 2000;14:31–9.

    Article  PubMed  CAS  Google Scholar 

  6. Young ME, Laws FA, Goodwin GW, Taegtmeyer H. Reactivation of peroxisome proliferator-activated receptor alpha is associated with contractile dysfunction in hypertrophied rat heart. J Biol Chem 2001;276:44390–5.

    Article  PubMed  CAS  Google Scholar 

  7. Kantor PF, Robertson MA, Coe JY, Lopaschuk GD. Volume overload hypertrophy of the newborn heart slows the maturation of enzymes involved in the regulation of fatty acid metabolism. J Am Coll Cardiol 1999;33:1724–34.

    Article  PubMed  CAS  Google Scholar 

  8. Sack MN, Rader TA, Park S, Bastin J, McCune SA, Kelly DP. Fatty acid oxidation enzyme gene expression is downregulated in the failing heart. Circulation 1996;94:2837–42.

    PubMed  CAS  Google Scholar 

  9. Christe ME, Rodgers RL. Altered glucose and fatty acid oxidation in hearts of the spontaneously hypertensive rat. J Mol Cell Cardiol 1994;26:1371–5.

    Article  PubMed  CAS  Google Scholar 

  10. Kelly DP, Strauss AW. Inherited cardiomyopathies. N Engl J Med 1994;330:913–9.

    Article  PubMed  CAS  Google Scholar 

  11. Bergmann SR, Weinheimer CJ, Markham J, Herrero P. Quantitation of myocardial fatty acid metabolism using PET. J Nucl Med 1996;37:1723–30.

    PubMed  CAS  Google Scholar 

  12. Soto PF, Herrero P, Kates AM, Dence CS, Ehsani AA, Davila-Roman V, et al. Impact of aging on myocardial metabolic response to dobutamine. Am J Physiol Heart Circ Physiol 2003;285:H2158–64.

    PubMed  CAS  Google Scholar 

  13. Peterson LR, Herrero P, Schechtman KB, Racette SB, Waggoner AD, Kisrieva-Ware Z, et al. Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 2004;109:2191–6.

    Article  PubMed  Google Scholar 

  14. Bergmann SR, Herrero P, Markham J, Weinheimer CJ, Walsh MN. Noninvasive quantitation of myocardial blood flow in human subjects with oxygen-15-labeled water and positron emission tomography. J Am Coll Cardiol 1989;14:639–52.

    Article  PubMed  CAS  Google Scholar 

  15. Lee HH, Davila-Roman VG, Ludbrook PA, Courtois M, Walsh JF, Delano DA, et al. Dependency of contractile reserve on myocardial blood flow: implications for the assessment of myocardial viability with dobutamine stress echocardiography. Circulation 1997;96: 2884–91.

    PubMed  CAS  Google Scholar 

  16. Buck A, Wolpers HG, Hutchins GD, Savas V, Mangner TJ, Nguyen N, et al. Effect of carbon-11-acetate recirculation on estimates of myocardial oxygen consumption by PET. J Nucl Med 1991;32:1950–7.

    PubMed  CAS  Google Scholar 

  17. Schiller NB, Shah PM, Crawford M, DeMaria A, Devereux R, Feigenbaum H, et al. Recommendations for quantitation of the left ventricle by two-dimensional echocardiography. American society of echocardiography committee on standards, subcommittee on quantitation of two-dimensional echocardiograms. J Am Soc Echocardiogr 1989;2:358–67.

    PubMed  CAS  Google Scholar 

  18. The sixth report of the Joint National Committee on prevention, detection, evaluation, and treatment of high blood pressure. Arch Intern Med 1997;157:2413-46.

    Google Scholar 

  19. Ungacta FF, Davila-Roman VG, Moulton MJ, Cupps BP, Moustakidis P, Fishman DS, et al. MRI-radiofrequency tissue tagging in patients with aortic insufficiency before and after operation. Ann Thorac Surg 1998;65:943–50.

    Article  PubMed  CAS  Google Scholar 

  20. Cupps BP, Moustakidis P, Pomerantz BJ, Vedala G, Scheri RP, Kouchoukos NT, et al. Severe aortic insufficiency and normal systolic function: determining regional left ventricular wall stress by finite-element analysis. Ann Thorac Surg 2003;76: 668–75.

    Article  PubMed  Google Scholar 

  21. Stefadouros MA, Dougherty MJ, Grossman W, Craige E. Determination of systemic vascular resistance by a noninvasive technic. Circulation 1973;47:101–7.

    PubMed  CAS  Google Scholar 

  22. Colan SD, Borow KM, Neumann A. Use of the calibrated carotid pulse tracing for calculation of left ventricular pressure and wall stress throughout ejection. Am Heart J 1985;109:1306–10.

    Article  PubMed  CAS  Google Scholar 

  23. Drzewiecki GM, Melbin J, Noordergraaf A. Arterial tonometry: review and analysis. J Biomech 1983;16:141–52.

    Article  PubMed  CAS  Google Scholar 

  24. Creswell LL, Moulton MJ, Wyers SG, Pirolo JS, Fishman DS, Perman WH, et al. An experimental method for evaluating constitutive models of myocardium in in vivo hearts. Am J Physiol 1994;267:H853–63.

    PubMed  CAS  Google Scholar 

  25. Moulton MJ, Creswell LL, Downing SW, Actis RL, Myers KW, Szabo BA, et al. Ventricular interaction in the pathologic heart. A model based study. ASAIO J 1994;40:M773–83.

    Article  PubMed  CAS  Google Scholar 

  26. Szabo BA, Babuéska I. Finite element analysis. New York: Wiley; 1991.

    Google Scholar 

  27. Maniar HS, Cupps BP, Potter DD, Moustakidis P, Camillo CJ, Chu CM, et al. Ventricular function after coronary artery bypass grafting: evaluation by magnetic resonance imaging and myocardial strain analysis. J Thorac Cardiovasc Surg 2004; 128:76–82.

    Article  PubMed  Google Scholar 

  28. Morgan CR, Lazarow A. Immunoassay of insulin using a two-antibody system. Proc Soc Exp Biol Med 1962;110:29–32.

    PubMed  CAS  Google Scholar 

  29. Davila-Roman VG, Vedala G, Herrero P, de las Fuentes L, Rogers JG, Kelly DP, et al. Altered myocardial fatty acid and glucose metabolism in idiopathic dilated cardiomyopathy. J Am Coll Cardiol 2002;40:271–7.

    Article  PubMed  CAS  Google Scholar 

  30. de las Fuentes L, Herrero P, Peterson LR, Kelly DP, Gropler RJ, Davila-Roman VG. Myocardial fatty acid metabolism: independent predictor of left ventricular mass in hypertensive heart disease. Hypertension 2003;41:83–7.

    Article  PubMed  CAS  Google Scholar 

  31. Takahashi R, Okumura K, Matsui H, Saburi Y, Kamiya H, Masubara K, et al. Impact of alpha-tocopherol on cardiac hypertrophy due to energy metabolism disorder: the involvement of 1,2-diacylglycerol. Cardiovasc Res 2003;58:565–74.

    Article  PubMed  CAS  Google Scholar 

  32. Rupp H, Elimban V, Dhalla NS. Modification of subcellular organelles in pressure-overloaded heart by etomoxir, a camitine palmitoyltransferase I inhibitor. FASEB J 1992;6:2349–53.

    PubMed  CAS  Google Scholar 

  33. Kusaka Y, Tanaka T, Okamoto F, Terasaki F, Matsunaga Y, Miyazaki H, et al. Effect of sulfo-N-succinimidyl palmitate on the rat heart: myocardial long-chain fatty acid uptake and cardiac hypertrophy. J Mol Cell Cardiol 1995;27:1605–12.

    Article  PubMed  CAS  Google Scholar 

  34. Tanaka T, Sohmiya K, Kawamura K. Is cd36 deficiency an etiology of hereditary hypertrophic cardiomyopathy? J Mol Cell Cardiol 1997;29:121–7.

    Article  PubMed  CAS  Google Scholar 

  35. Moalic JM, Charlemagne D, Mansier P, Chevalier B, Swynghedauw B. Cardiac hypertrophy and failure—a disease of adaptation. Modifications in membrane proteins provide a molecular basis for arrhythmogenicity. Circulation 1993;87:IV21–6.

    PubMed  CAS  Google Scholar 

  36. Wittels B, Spann JF Jr. Defective lipid metabolism in the failing heart. J Clin Invest 1968;47:1787–94.

    PubMed  CAS  Google Scholar 

  37. Bishop SP, Altschuld RA. Increased glycolytic metabolism in cardiac hypertrophy and congestive failure. Am J Physiol 1970; 218:153–9.

    PubMed  CAS  Google Scholar 

  38. Feinendegen LE, Henrich MM, Kuikka JT, Thompson KH, Vester EG, Strauer B. Myocardial lipid turnover in dilated cardiomyopathy: a dual in vivo tracer approach. J Nucl Cardiol 1995;2:42–52.

    Article  PubMed  CAS  Google Scholar 

  39. Massie BM, Schaefer S, Garcia J, McKiman MD, Schwartz GG, Wisneski JA, et al. Myocardial high-energy phosphate and substrate metabolism in swine with moderate left ventricular hypertrophy. Circulation 1995;91:1814–23.

    PubMed  CAS  Google Scholar 

  40. Goldstein RA, Klein MS, Welch MJ, Sobel BE. External assessment of myocardial metabolism with C-11 palmitate in vivo. J Nucl Med 1980;21:342–8.

    PubMed  CAS  Google Scholar 

  41. Kelly DP, Mendelsohn NJ, Sobel BE, Bergmann SR. Detection and assessment by positron emission tomography of a genetically determined defect in myocardial fatty acid utilization (long-chain acyl-CoA dehydrogenase deficiency). Am J Cardiol 1993;71:738–44.

    Article  PubMed  CAS  Google Scholar 

  42. Kurata C, Tawarahara K, Taguchi T, Aoshima S, Kobayashi A, Yamazaki N, et al. Myocardial emission computed tomography with iodine-123-labeled beta-methyl-branched fatty acid in patients with hypertrophic cardiomyopathy. J Nucl Med 1992;33:6–13.

    PubMed  CAS  Google Scholar 

  43. Takeishi Y, Chiba J, Abe S, Tonooka I, Komatani A, Tomoike H. Heterogeneous myocardial distribution of iodine-123 15-(p-iodophenyl)- 3-r,s-methylpentadecanoic acid (BMIPP) in patients with hypertrophic cardiomyopathy. Eur J Nucl Med 1992; 19:775–82.

    Article  PubMed  CAS  Google Scholar 

  44. Yazaki Y, Isobe M, Takahashi W, Kitabayashi H, Nishiyama O, Sekiguchi M, et al. Assessment of myocardial fatty acid metabolic abnormalities in patients with idiopathic dilated cardiomyopathy using 123I BMIPP SPECT: correlation with clinicopathological findings and clinical course. Heart 1999;81:153–9.

    PubMed  CAS  Google Scholar 

  45. Nakayama H, Morozumi T, Nanto S, Shimonagata T, Ohara T, Takano Y, et al. Abnormal myocardial free fatty acid utilization deteriorates with morphological changes in the hypertensive heart. Jpn Circ J 2001;65:783–7.

    Article  PubMed  CAS  Google Scholar 

  46. Laine H, Katoh C, Luotolahti M, Yki-Jarvinen H, Kantola I, Jula A, et al. Myocardial oxygen consumption is unchanged but efficiency is reduced in patients with essential hypertension and left ventricular hypertrophy. Circulation 1999;100:2425–30.

    PubMed  CAS  Google Scholar 

  47. Modan M, Halkin H, Almog S, Lusky A, Eshkol A, Shefi M, et al. Hyperinsulinemia. A link between hypertension obesity and glucose intolerance. J Clin Invest 1985;75:809–17.

    Article  PubMed  CAS  Google Scholar 

  48. Ferrannini E, Buzzigoli G, Bonadonna R, Giorico MA, Oleggini M, Graziadei L, et al. Insulin resistance in essential hypertension. N Engl J Med 1987;317:350–7.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lisa de las Fuentes.

Additional information

Supported in part by giants R01HL58878, R01AG15466, R01HL71782, and P01HL13851 (all to Dr Dávila-Román), as well as grants from the Bames-Jewish Hospital (to Dr Dávila-Román), Robert Wood Johnson (to Dr de las Fuentes), and Sandra A. Daugherty Foundations (to Dr de las Fuentes).

Rights and permissions

Reprints and permissions

About this article

Cite this article

de las Fuentes, L., Soto, P.F., Cupps, B.P. et al. Hypertensive left ventricular hypertrophy is associated with abnormal myocardial fatty acid metabolism and myocardial efficiency. J Nucl Cardiol 13, 369–377 (2006). https://doi.org/10.1016/j.nuclcard.2006.01.021

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2006.01.021

Key Words

Navigation