Skip to main content
Log in

Assessment of cardiac sympathetic neuronal function using PET imaging

  • Published:
Journal of Nuclear Cardiology Aims and scope

Abstract

The autonomic nervous system plays a key role for regulation of cardiac performance, and the importance of alterations of innervation in the pathophysiology of various heart diseases has been increasingly emphasized. Nuclear imaging techniques have been established that allow for global and regional investigation of the myocardial nervous system. The guanethidine analog iodine 123 metaiodobenzylguanidine (MIBG) has been introduced for scintigraphic mapping of presynaptic sympathetic innervation and is available today for imaging on a broad clinical basis. Not much later than MIBG, positron emission tomography (PET) has also been established for characterizing the cardiac autonomic nervous system. Although PET is methodologically demanding and less widely available, it provides substantial advantages. High spatial and temporal resolution along with routinely available attenuation correction allows for detailed definition of tracer kinetics and makes noninvasive absolute quantification a reality. Furthermore, a series of different radiolabeled catecholamines, catecholamine analogs, and receptor ligands are available. Those are often more physiologic than MIBG and well understood with regard to their tracer physiologic properties. PET imaging of sympathetic neuronal function has been successfully applied to gain mechanistic insights into myocardial biology and pathology. Available tracers allow dissection of processes of presynaptic and postsynaptic innervation contributing to cardiovascular disease. This review summarizes characteristics of currently available PET tracers for cardiac neuroimaging along with the major findings derived from their application in health and disease. (J Nucl Cardiol 2004;11:603-16.)

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pierpont GL, DeMaster EG, Reynolds S, Pederson J, Cohn JN. Ventricular myocardial catecholamines in primates. J Lab Clin Med 1985;106:205–10.

    PubMed  CAS  Google Scholar 

  2. Francis GS. Modulation of peripheral sympathetic nerve transmission. J Am Coll Cardiol 1988;12:250–4.

    Article  PubMed  CAS  Google Scholar 

  3. Jaques S Jr, Tobes MC, Sisson JC. Sodium dependency of uptake of norepinephrine and m-iodobenzylguanidine into cultured human pheochromocytoma cells: evidence for uptake-one. Cancer Res 1987;47:3920–8.

    PubMed  Google Scholar 

  4. Schomig A. Catecholamines in myocardial ischemia. Systemic and cardiac release. Circulation 1990;82:II13–22.

    PubMed  CAS  Google Scholar 

  5. Russ H, Gliese M, Sonna J, Schomig E. The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+). Naunyn Schmiedebergs Arch Pharmacol 1992;346:158–65.

    Article  PubMed  CAS  Google Scholar 

  6. Salt PJ. Inhibition of noradrenaline uptake 2 in the isolated rat heart by steroids, clonidine and methoxylated phenylethylamines. Eur J Pharmacol 1972;20:329–40.

    Article  PubMed  CAS  Google Scholar 

  7. Bristow MR. Changes in myocardial and vascular receptors in heart failure. J Am Coll Cardiol 1993;22:61A-71A.

    PubMed  CAS  Google Scholar 

  8. Riemann B, Schafers M, Law MP, Wichter T, Schober O. Radioligands for imaging myocardial alpha- and beta-adrenoceptors. Nuklearmedizin 2003;42:4–9.

    PubMed  CAS  Google Scholar 

  9. Rosenspire KC, Haka MS, Van Dort ME, et al. Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med 1990;31:1328–34.

    PubMed  CAS  Google Scholar 

  10. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 1993;34:1287–93.

    PubMed  CAS  Google Scholar 

  11. Schwaiger M, Kalff V, Rosenspire K, et al. Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 1990;82:457–64.

    PubMed  CAS  Google Scholar 

  12. Raffel DM, Corbett JR, del Rosario RB, et al. Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 1996;37:1923–31.

    PubMed  CAS  Google Scholar 

  13. Caldwell JH, Kroll K, Li Z, et al. Quantitation of presynaptic cardiac sympathetic function with carbon-11-meta-hydroxyephedrine. J Nucl Med 1998;39:1327–34.

    PubMed  CAS  Google Scholar 

  14. Chakraborty PK, Gildersleeve DL, Jewett DM, et al. High yield synthesis of high specific activity R-(-)-[11C]epinephrine for routine PET studies in humans. Nucl Med Biol 1993;20:939–44.

    Article  PubMed  CAS  Google Scholar 

  15. Nguyen NT, DeGrado TR, Chakraborty P, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-epinephrine in the isolated working rat heart. J Nucl Med 1997;38:780–5.

    PubMed  CAS  Google Scholar 

  16. Munch G, Nguyen NT, Nekolla S, et al. Evaluation of sympathetic nerve terminals with [(11)C] [(11)C]epinephrine and [(11)C] [(11)C]hydroxyephedrine and positron emission tomography. Circulation 2000;101:516–23.

    PubMed  CAS  Google Scholar 

  17. Langer O, Halldin C. PET and SPET tracers for mapping the cardiac nervous system. Eur J Nucl Med Mol Imaging 2002;29: 416–34.

    Article  PubMed  CAS  Google Scholar 

  18. Goldstein DS, Chang PC, Eisenhofer G, et al. Positron emission tomographic imaging of cardiac sympathetic innervation and function. Circulation 1990;81:1606–21.

    PubMed  CAS  Google Scholar 

  19. Goldstein DS, Eisenhofer G, Dunn BB, et al. Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 1993;22:1961–71.

    PubMed  CAS  Google Scholar 

  20. Del Rosario RB, Jung YW, Caraher J, Chakraborty PK, Wieland DM. Synthesis and preliminary evaluation of [11C]-(-)-phenylephrine as a functional heart neuronal PET agent. Nucl Med Biol 1996;23:611–6.

    Article  PubMed  Google Scholar 

  21. Raffel DM, Wieland DM. Influence of vesicular storage and monoamine oxidase activity on [11C]phenylephrine kinetics: studies in isolated rat heart. J Nucl Med 1999;40:323–30.

    PubMed  CAS  Google Scholar 

  22. Wieland DM, Rosenspire KC, Hutchins GD, et al. Neuronal mapping of the heart with 6-[18F]fluorometaraminol. J Med Chem 1990;33:956–64.

    Article  PubMed  CAS  Google Scholar 

  23. Langer O, Dolle F, Valette H, et al. Synthesis of high-specificradioactivity 4- and 6-[18F]fluorometaraminol-PET tracers for the adrenergic nervous system of the heart. Bioorg Med Chem 2001; 9:677–94.

    Article  PubMed  CAS  Google Scholar 

  24. Vaidyanathan G, Affleck DJ, Zalutsky MR. Validation of 4- [fluorine-18]fluoro-3-iodobenzylguanidine as a positron-emitting analog of MIBG. J Nucl Med 1995;36:644–50.

    PubMed  CAS  Google Scholar 

  25. Raffel D, Loc’h C, Mardon K, Maziere B, Syrota A. Kinetics of the norepinephrine analog [76Br]-meta-bromobenzylguanidine in isolated working rat heart. Nucl Med Biol 1998;25:1–16.

    Article  PubMed  CAS  Google Scholar 

  26. Berry CR, Garg PK, Zalutsky MR, Coleman RE, DeGrado TR. Uptake and retention kinetics of para-fluorine-18-fluorobenzylguanidine in isolated rat heart. J Nucl Med 1996;37:2011–6.

    PubMed  CAS  Google Scholar 

  27. Law MP. Demonstration of the suitability of CGP 12177 for in vivo studies of beta-adrenoceptors. Br J Pharmacol 1993;109: 1101–9.

    PubMed  CAS  Google Scholar 

  28. Delforge J, Syrota A, Lancon JP, et al. Cardiac beta-adrenergic receptor density measured in vivo using PET, CGP 12177, and a new graphical method. J Nucl Med 1991;32:739–48.

    PubMed  CAS  Google Scholar 

  29. Elsinga PH, van Waarde A, Jaeggi KA, et al. Synthesis and evaluation of (S)-4-(3-(2’-[11C]isopropylamino)-2-hydroxypropoxy)-2Hbenzimidazol- 2-one ((S)-[11C] CGP 12388) and S)-4-(3-((1’-[18F]-fluoroisopropyl)amino)-2-hydroxypropoxy)-2H-benzimidazol-2-one ((S)-[18F]fluoro-CGP 12388) for visualization of beta-adrenoceptors with positron emission tomography. J Med Chem 1997;40:3829–35.

    Article  PubMed  CAS  Google Scholar 

  30. Momose M, Reder S, Raffel DM, et al. Evaluation of cardiac beta-adrenoreceptors in the isolated perfused rat heart using (S)-11C-CGP12388. J Nucl Med 2004;45:471–7.

    PubMed  CAS  Google Scholar 

  31. Doze P, Elsinga PH, van Waarde A, et al. Quantification of beta-adrenoceptor density in the human heart with (S)-[11C]CGP 12388 and a tracer kinetic model. Eur J Nucl Med Mol Imaging 2002;29:295–304.

    Article  PubMed  CAS  Google Scholar 

  32. Law MP, Osman S, Pike VW, et al. Evaluation of [11C]GB67, a novel radioligand for imaging myocardial alpha 1-adrenoceptors with positron emission tomography. Eur J Nucl Med 2000;27:7–17.

    Article  PubMed  CAS  Google Scholar 

  33. Van Waarde A, Elsinga PH, Brodde OE, Visser GM, Vaalburg W. Myocardial and pulmonary uptake of S-1’-[18F]fluorocarazolol in intact rats reflects radioligand binding to beta-adrenoceptors. Eur J Pharmacol 1995;272:159–68.

    Article  PubMed  Google Scholar 

  34. Van Waarde A, Meeder JG, Blanksma PK, et al. Suitability of CGP-12177 and CGP-26505 for quantitative imaging of betaadrenoceptors. Int J Rad Appl Instrum B 1992;19:711–8.

    PubMed  Google Scholar 

  35. Visser TJ, van der Wouden EA, Van Waarde A, et al. Synthesis and biodistribution of [11c]procaterol, a beta2-adrenoceptor agonist for positron emission tomography. Appl Radiat Isot 2000;52:857–63.

    Article  PubMed  CAS  Google Scholar 

  36. Riemann B, Law MP, Kopka K, et al. High non-specific binding of the beta(1)-selective radioligand 2-(125)I-ICI-H. Nuklearmedizin 2003;42:173–80.

    PubMed  CAS  Google Scholar 

  37. DeGrado TR, Mulholland GK, Wieland DM, Schwaiger M. Evaluation of (-)[18F]fluoroethoxybenzovesamicol as a new PET tracer of cholinergic neurons of the heart. Nucl Med Biol 1994; 21:189–95.

    Article  PubMed  CAS  Google Scholar 

  38. Syrota A, Paillotin G, Davy JM, Aumont MC. Kinetics of in vivo binding of antagonist to muscarinic cholinergic receptor in the human heart studied by positron emission tomography. Life Sci 1984;35:937–45.

    Article  PubMed  CAS  Google Scholar 

  39. Delforge J, Le Guludec D, Syrota A, et al. Quantification of myocardial muscarinic receptors with PET in humans. J Nucl Med 1993;34:981–91.

    PubMed  CAS  Google Scholar 

  40. Delahaye N, Le Guludec D, Dinanian S, et al. Myocardial muscarinic receptor upregulation and normal response to isoproterenol in denervated hearts by familial amyloid polyneuropathy. Circulation 2001;104:2911–6.

    Article  PubMed  CAS  Google Scholar 

  41. Le Guludec D, Delforge J, Syrota A, et al. In vivo quantification of myocardial muscarinic receptors in heart transplant patients. Circulation 1994;90:172–8.

    PubMed  Google Scholar 

  42. Le Guludec D, Cohen-Solal A, Delforge J, et al. Increased myocardial muscarinic receptor density in idiopathic dilated cardiomyopathy: an in vivo PET study. Circulation 1997;96:3416–22.

    PubMed  CAS  Google Scholar 

  43. Mancini D. Surgically denervated cardiac transplant. Rewired or permanently unplugged? Circulation 1997;96:6–8.

    PubMed  CAS  Google Scholar 

  44. Schwaiger M, Hutchins GD, Kalff V, et al. Evidence for regional catecholamine uptake and storage sites in the transplanted human heart by positron emission tomography. J Clin Invest 1991;87: 1681–90.

    Article  PubMed  CAS  Google Scholar 

  45. Bengel FM, Ueberfuhr P, Ziegler SI, et al. Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 1999;99:1866–71.

    PubMed  CAS  Google Scholar 

  46. Uberfuhr P, Ziegler S, Schwaiblmair M, Reichart B, Schwaiger M. Incomplete sympathic reinnervation of the orthotopically transplanted human heart: observation up to 13 years after heart transplantation. Eur J Cardiothorac Surg 2000;17:161–8.

    Article  PubMed  CAS  Google Scholar 

  47. Odaka K, von Scheidt W, Ziegler SI, et al. Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. J Nucl Med 2001;42:1011–6.

    PubMed  CAS  Google Scholar 

  48. Uberfuhr P, Frey AW, Ziegler S, Reichart B, Schwaiger M. Sympathetic reinnervation of sinus node and left ventricle after heart transplantation in humans: regional differences assessed by heart rate variability and positron emission tomography. J Heart Lung Transplant 2000;19:317–23.

    Article  PubMed  CAS  Google Scholar 

  49. Ziegler SI, Frey AW, Uberfuhr P, et al. Assessment of myocardial reinnervation in cardiac transplants by positron emission tomography: functional significance tested by heart rate variability. Clin Sci (Lond) 1996;91(Suppl):126–8.

    Google Scholar 

  50. Bengel FM, Ueberfuhr P, Hesse T, et al. Clinical determinants of ventricular sympathetic reinnervation after orthotopic heart transplantation. Circulation 2002;106:831–5.

    Article  PubMed  Google Scholar 

  51. Di Carli MF, Tobes MC, Mangner T, et al. Effects of cardiac sympathetic innervation on coronary blood flow. N Engl J Med 1997;336:1208–15.

    Article  PubMed  Google Scholar 

  52. Bengel FM, Ueberfuhr P, Ziegler SI, et al. Non-invasive assessment of the effect of cardiac sympathetic innervation on metabolism of the human heart. Eur J Nucl Med 2000;27:1650–7.

    Article  PubMed  CAS  Google Scholar 

  53. Bengel FM, Ueberfuhr P, Schiepel N, et al. Myocardial efficiency and sympathetic reinnervation after orthotopic heart transplantation: a noninvasive study with positron emission tomography. Circulation 2001;103:1881–6.

    PubMed  CAS  Google Scholar 

  54. Bengel FM, Ueberfuhr P, Schiepel N, et al. Effect of sympathetic reinnervation on cardiac performance after heart transplantation. N Engl J Med 2001;345:731–8.

    Article  PubMed  CAS  Google Scholar 

  55. Schwaiger M, Guibourg H, Rosenspire K, et al. Effect of regional myocardial ischemia on sympathetic nervous system as assessed by fluorine-18-metaraminol. J Nucl Med 1990;31:1352–7.

    PubMed  CAS  Google Scholar 

  56. Allman KC, Wieland DM, Muzik O, et al. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368–75.

    PubMed  CAS  Google Scholar 

  57. Bulow HP, Stahl F, Lauer B, et al. Alterations of myocardial presynaptic sympathetic innervation in patients with multi-vessel coronary artery disease but without history of myocardial infarction. Nucl Med Commun 2003;24:233–9.

    Article  PubMed  CAS  Google Scholar 

  58. Fallen EL, Coates G, Nahmias C, et al. Recovery rates of regional sympathetic reinnervation and myocardial blood flow after acute myocardial infarction. Am Heart J 1999;137:863–9.

    Article  PubMed  CAS  Google Scholar 

  59. Bristow MR. The autonomic nervous system in heart failure. N Engl J Med 1984;311:850–1.

    PubMed  CAS  Google Scholar 

  60. Merlet P, Delforge J, Syrota A, et al. Positron emission tomography with 11C CGP-12177 to assess beta-adrenergic receptor concentration in idiopathic dilated cardiomyopathy. Circulation 1993;87:1169–78.

    PubMed  CAS  Google Scholar 

  61. Hartmann F, Ziegler S, Nekolla S, et al. Regional patterns of myocardial sympathetic denervation in dilated cardiomyopathy: an analysis using carbon-11 hydroxyephedrine and positron emission tomography. Heart 1999;81:262–70.

    PubMed  CAS  Google Scholar 

  62. Ungerer M, Hartmann F, Karoglan M, et al. Regional in vivo and in vitro characterization of autonomic innervation in cardiomyopathic human heart. Circulation 1998;97:174–80.

    PubMed  CAS  Google Scholar 

  63. Ungerer M, Weig HJ, Kubert S, et al. Regional pre- and postsynaptic sympathetic system in the failing human heart-regulation of beta ARK-1. Eur J Heart Fail 2000;2:23–31.

    Article  PubMed  CAS  Google Scholar 

  64. Vesalainen RK, Pietila M, Tahvanainen KU, et al. Cardiac positron emission tomography imaging with [11C]hydroxyephedrine, a specific tracer for sympathetic nerve endings, and its functional correlates in congestive heart failure. Am J Cardiol 1999;84:568–74.

    Article  PubMed  CAS  Google Scholar 

  65. Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Relationship between altered sympathetic innervation, oxidative metabolism and contractile function in the cardiomyopathic human heart; a non-invasive study using positron emission tomography. Eur Heart J 2001;22:1594–600.

    Article  PubMed  CAS  Google Scholar 

  66. Bengel FM, Permanetter B, Ungerer M, Nekolla SG, Schwaiger M. Alterations of the sympathetic nervous system and metabolic performance of the cardiomyopathic heart. Eur J Nucl Med Mol Imaging 2002;29:198–202.

    Article  PubMed  CAS  Google Scholar 

  67. Pietila M, Malminiemi K, Ukkonen H, et al. Reduced myocardial carbon-11 hydroxyephedrine retention is associated with poor prognosis in chronic heart failure. Eur J Nucl Med 2001;28:373–6.

    Article  PubMed  CAS  Google Scholar 

  68. Pietila M, Malminiemi K, Vesalainen R, et al. Exercise training in chronic heart failure: beneficial effects on cardiac (11)Chydroxyephedrine PET, autonomic nervous control, and ventricular repolarization. J Nucl Med 2002;43:773–9.

    PubMed  Google Scholar 

  69. Schafers M, Dutka D, Rhodes CG, et al. Myocardial presynaptic and postsynaptic autonomic dysfunction in hypertrophic cardiomyopathy. Circ Res 1998;82:57–62.

    PubMed  CAS  Google Scholar 

  70. Li ST, Tack CJ, Fananapazir L, Goldstein DS. Myocardial perfusion and sympathetic innervation in patients with hypertrophic cardiomyopathy. J Am Coll Cardiol 2000;35:1867–73.

    Article  PubMed  CAS  Google Scholar 

  71. Calkins H, Allman K, Bolling S, et al. Correlation between scintigraphic evidence of regional sympathetic neuronal dysfunction and ventricular refractoriness in the human heart. Circulation 1993;88:172–9.

    PubMed  CAS  Google Scholar 

  72. Calkins H, Lehmann MH, Allman K, Wieland D, Schwaiger M. Scintigraphic pattern of regional cardiac sympathetic innervation in patients with familial long QT syndrome using positron emission tomography. Circulation 1993;87:1616–21.

    PubMed  CAS  Google Scholar 

  73. Mazzadi AN, Andre-Fouet X, Duisit J, et al. Heterogeneous cardiac retention of 11C-hydroxyephedrine in genotyped long QT patients. A potential amplifier role for severity of the disease. Am J Physiol Heart Circ Physiol 2003;285:H1286–93.

    PubMed  CAS  Google Scholar 

  74. Schafers M, Lerch H, Wichter T, et al. Cardiac sympathetic innervation in patients with idiopathic right ventricular outflow tract tachycardia. J Am Coll Cardiol 1998;32:181–6.

    Article  PubMed  CAS  Google Scholar 

  75. Wichter T, Schafers M, Rhodes CG, et al. Abnormalities of cardiac sympathetic innervation in arrhythmogenic right ventricular cardiomyopathy: quantitative assessment of presynaptic norepinephrine reuptake and postsynaptic beta-adrenergic receptor density with positron emission tomography. Circulation 2000;101:1552–8.

    PubMed  CAS  Google Scholar 

  76. Allman KC, Stevens MJ, Wieland DM, et al. Noninvasive assessment of cardiac diabetic neuropathy by carbon-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 1993;22:1425–32.

    PubMed  CAS  Google Scholar 

  77. Stevens MJ, Raffel DM, Allman KC, et al. Cardiac sympathetic dysinnervation in diabetes: implications for enhanced cardiovascular risk. Circulation 1998;98:961–8.

    PubMed  CAS  Google Scholar 

  78. Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation complicating diabetes: an assessment by C-11 hydroxyephedrine and positron emission tomography. Metabolism 1999;48:92–101.

    Article  PubMed  CAS  Google Scholar 

  79. Schmid H, Forman LA, Cao X, Sherman PS, Stevens MJ. Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin-induced diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 1999;48:603–8.

    Article  PubMed  CAS  Google Scholar 

  80. Stevens MJ, Dayanikli F, Raffel DM, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. J Am Coll Cardiol 1998;31:1575–84.

    Article  PubMed  CAS  Google Scholar 

  81. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813–9.

    PubMed  Google Scholar 

  82. Berding G, Schrader CH, Peschel T, et al. [N-methyl (11)C]meta- Hydroxyephedrine positron emission tomography in Parkinson’s disease and multiple system atrophy. Eur J Nucl Med Mol Imaging 2003;30:127–31.

    Article  PubMed  CAS  Google Scholar 

  83. Goldstein DS, Holmes CS, Dendi R, Bruce SR, Li ST. Orthostatic hypotension from sympathetic denervation in Parkinson’s disease. Neurology 2002;58:1247–55.

    PubMed  CAS  Google Scholar 

  84. Goldstein DS, Holmes C, Cannon RO III, Eisenhofer G, Kopin IJ. Sympathetic cardioneuropathy in dysautonomias. N Engl J Med 1997;336:696–702.

    Article  PubMed  CAS  Google Scholar 

  85. Raffel DM, Wieland DM. Assessment of cardiac sympathetic nerve integrity with positron emission tomography. Nucl Med Biol 2001;28:541–59.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank M. Bengel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bengel, F.M., Schwaiger, M. Assessment of cardiac sympathetic neuronal function using PET imaging. J Nucl Cardiol 11, 603–616 (2004). https://doi.org/10.1016/j.nuclcard.2004.06.133

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2004.06.133

Keywords

Navigation