Skip to main content

Advertisement

Log in

The historical and conceptual evolution of radionuclide assessment of myocardial viability

  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Bax JJ, Wijns W, Cornel JH, et al. Accuracy of currently available techniques for prediction of functional recovery after revascularization in patients with left ventricular dysfunction due to chronic coronary artery disease: comparison of pooled data. J Am Coll Cardiol 1997;30:1451–60.

    Article  PubMed  CAS  Google Scholar 

  2. Allman KC, Shaw LJ, Hachamovitch R, Udelson JE. Myocardial viability testing and impact of revascularization on prognosis in patients with coronary artery disease and left ventricular dysfunction: a meta-analysis. J Am Coll Cardiol 2002;39:1151–8.

    Article  PubMed  Google Scholar 

  3. Di Carli MF. Assessment of myocardial viability after myocardial infarction. J Nucl Cardiol 2002;9:229–35.

    Article  Google Scholar 

  4. Heyndrickx GR, Millard RW, McRitchie RJ, Maroko PR, Vatner SF. Regional myocardial functional and electrophysiological alterations after brief coronary artery occlusion in conscious dogs. J Clin Invest 1975;56:978–85.

    Article  PubMed  CAS  Google Scholar 

  5. Braunwald E, Kloner RA. The stunned myocardium: prolonged, postischemic ventricular dysfunction. Circulation 1982;66:1146–9.

    PubMed  CAS  Google Scholar 

  6. Diamond GA, Forrester JS, deLuz PL, et al. Post-extrasystolic potentiation of ischemic myocardium by atrial stimulation. Am Heart J 1978;95:204–9.

    Article  PubMed  CAS  Google Scholar 

  7. Rahimtoola SH. A perspective on the three large multicenter randomized clinical trials of coronary bypass surgery for chronic stable angina. Circulation 1985;72(Suppl V):V-123-V-135.

    Google Scholar 

  8. Rees G, Bristow JD, Kremkau EL, et al. Influence of aortocoronary bypass surgery on left ventricular performance. N Engl J Med 1971;284:1116–25.

    PubMed  CAS  Google Scholar 

  9. Dilsizian V, Bonow RO, Cannon RO, et al. The effect of coronary artery bypass grafting on left ventricular systolic function at rest: evidence for preoperative subclinical myocardial ischemia. Am J Cardiol 1988;61:1248–54.

    Article  PubMed  CAS  Google Scholar 

  10. Bonow RO, Dilsizian V. Thallium-201 for assessment of myocardial viability. Semin Nucl Med 1991;21:230–41.

    Article  PubMed  CAS  Google Scholar 

  11. Wijns W, Vatner SF, Camici PG. Mechanisms of disease: hibernating myocardium. N Engl J Med 1998;339:173–7.

    Article  PubMed  CAS  Google Scholar 

  12. Taegtmeyer H. Modulation of responses to myocardial ischemia: metabolic features of myocardial stunning, hibernation, and ischemic preconditioning. In: Dilsizian V, editor. Myocardial viability: a clinical and scientific treatise. Armonk(NY):Futura Publishing; 2000. p. 25–36.

    Google Scholar 

  13. Helfant RH, Pine R, Meister SG, et al. Nitroglycerin to unmask reversible asynergy: correlation with post-coronary bypass ventriculography. Circulation 1974;50:108–13.

    PubMed  CAS  Google Scholar 

  14. Popio KA, Gorlin R, Bechtel D, Levine JA. Postextrasystolic potentiation as a predictor of potential myocardial viability: preoperative analysis compared with studies after coronary bypass surgery. Am J Cardiol 1977;39:944–53.

    Article  PubMed  CAS  Google Scholar 

  15. Horn HR, Teichholz LE, Cohn PF, Herman MV, Gorlin R. Augmentation of left ventricular contraction pattern in coronary artery disease by an inotropic catecholamine. The epinephrine ventriculogram. Circulation 1974;49:1063–71.

    PubMed  CAS  Google Scholar 

  16. Rozanski A, Berman D, Gray R, et al. Preoperative prediction of reversible myocardial asynergy by postexercise radionuclide ventriculography. N Engl J Med 1982;307:212–6.

    PubMed  CAS  Google Scholar 

  17. Love WD, Romney RB, Burch GE. A comparison of the distribution of potassium and exchangeable rubidium in the organs of the dog, using rubidium-86. Circ Res 1954;2:112–22.

    PubMed  CAS  Google Scholar 

  18. Prokop EK, Strauss HW, Shaw J, Pitt B, Wagner HN. Comparison of regional myocardial perfusion determined by ionic potassium-43 to that determined by microspheres. Circulation 1974;50:978–84.

    PubMed  CAS  Google Scholar 

  19. Lie JT, Pairolero PC, Holley KE, et al. Time course and zonal variations of ischemia-induced myocardial cationic electrolyte derangements. Circulation 1975;51:860–6.

    PubMed  CAS  Google Scholar 

  20. Zaret BL, Strauss HW, Martin ND, Wells HP, Flamm MD. Noninvasive regional myocardial perfusion with radioactive potassium: study of patients at rest with exercise and during angina pectoris. N Engl J Med 1973;288:809–12.

    PubMed  CAS  Google Scholar 

  21. Lebowitz E, Greene MW, Fairchild R, et al. Thallium-201 for medical use I. J Nucl Med 1975;16:151–5.

    PubMed  CAS  Google Scholar 

  22. Pohost GM, Zir LM, Moore RH, et al. Differentiation of transiently ischemic from infarcted myocardium by serial imaging after a single dose of thallium-201. Circulation 1977;55:294–302.

    PubMed  CAS  Google Scholar 

  23. Akins CW, Pohost GM, Desanctis RW, Block PC. Selection of angina-free patients with severe left ventricular dysfunction for myocardial revascularization. Am J Cardiol 1980;46:695–700.

    Article  PubMed  CAS  Google Scholar 

  24. Gibson RS, Watson DD, Taylor GJ, et al. Prospective assessment of regional myocardial perfusion before and after coronary revascularization surgery by quantitative thallium-201 scintigraphy. J Am Coll Cardiol 1983;1:804–15.

    Article  PubMed  CAS  Google Scholar 

  25. Tillisch JH, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  26. Gutman J, Berman DS, Freeman M, et al. Time to completed redistribution of thallium-201 in exercise myocardial scintigraphy: relationship to the degree of coronary artery stenosis. Am Heart J 1983;106:989–95.

    Article  PubMed  CAS  Google Scholar 

  27. Brunken RC, Mody FV, Hawkins RA, et al. Positron emission tomography detects metabolic viability in myocardium with persistent 24-hour single-photon emission computed tomography 201Tl defects. Circulation 1992;86:1357–69.

    PubMed  CAS  Google Scholar 

  28. Kiat H, Berman DS, Maddahi J, et al. Late reversibility of tomographic myocardial thallium-201 defects: an accurate marker of myocardial viability. J Am Coll Cardiol 1988;12:1456–63.

    PubMed  CAS  Google Scholar 

  29. Dilsizian V, Rocco TP, Freedman NM, Leon MB, Bonow RO. Enhanced detection of ischemic but viable myocardium by the reinjection of thallium after stress-redistribution imaging. N Engl J Med 1990;323:141–6.

    PubMed  CAS  Google Scholar 

  30. Bonow RO, Dilsizian V, Cuocolo A, Bacharach SL. Identification of viable myocardium in patients with coronary artery disease and left ventricular dysfunction: comparison of thallium scintigraphy with reinjection and PET imaging with 18F-fluorodeoxyglucose. Circulation 1991;83:26–37.

    PubMed  CAS  Google Scholar 

  31. Srinivasan G, Kitsiou AN, Bacharach SL, et al. 18F-fluorodeoxyglucose single photon emission computed tomography: can it replace PET and thallium SPECT for the assessment of myocardial viability? Circulation 1998;97:843–50.

    PubMed  CAS  Google Scholar 

  32. Gewirtz H, Beller GA, Strauss HW, et al. Transient defects of resting thallium scans in patients with coronary artery disease. Circulation 1979;59:707–13.

    PubMed  CAS  Google Scholar 

  33. Berger BC, Watson DD, Burwell LR, et al. Redistribution of thallium at rest in patients with stable and unstable angina and the effect of coronary artery bypass surgery. Circulation 1979;60:1114–25.

    PubMed  CAS  Google Scholar 

  34. Ragosta M, Beller GA, Watson DD, Kaul S, Gimple LW. Quantitative planar rest-redistribution 201Tl imaging in detection of myocardial viability and prediction of improvement in left ventricular function after coronary artery bypass surgery in patients with severely depressed left ventricular function. Circulation 1993;87:1630–41.

    PubMed  CAS  Google Scholar 

  35. Li Q-S, Frank TL, Franseschi D, Wagner HN, Becker LC. Technetium-99m methoxyisobutylisonitrile (RP30) for quantification of myocardial ischemia and reperfusion in dogs. J Nucl Med 1988;29:1539–48.

    PubMed  CAS  Google Scholar 

  36. Sinusas AJ, Bergin JD, Edwards NC, et al. Redistribution of 99mTc-sestamibi and 201Tl in the presence of a severe coronary artery stenosis. Circulation 1994;89:2332–41.

    PubMed  CAS  Google Scholar 

  37. Dilsizian V, Arrighi JA, Diodati JG, et al. Myocardial viability in patients with chronic coronary artery disease: comparison of Tc99m-sestamibi with thallium reinjection and fluorodeoxyglucose. Circulation 1994;89:678–87.

    Google Scholar 

  38. Klocke FJ, Baird MG, Bateman TM, et al. ACC/AHA/ASNC guidelines for the clinical use of cardiac radionuclide imaging: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (ACC/AHA/ASNC Committee to Revise the 1995 Guidelines for the Clinical Use of Radionuclide Imaging). American College of Cardiology Web Site. Available at: http://www.acc.org/clinical/guidelines/radio/ rni_fulltext.pdf. 2003. Accessed April 25, 2004.

  39. Udelson JE. Assessment of myocardial viability with technetium- 99m-labeled agents. In: Zaret BL, Beller GA, editors. Nuclear cardiology: state of the art and future directions. St Louis: Mosby; 1999. p. 513–33.

    Google Scholar 

  40. He Z, Medrano R, Hays JT, Mahmarian JJ, Verani MS. Nitroglycerinaugmented 201Tl reinjection enhances detection of reversible myocardial hypoperfusion: a randomized, double-blind, parallel, placebo-controlled trial. Circulation 1997;95:1799–805.

    PubMed  CAS  Google Scholar 

  41. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  42. Bonow RO. Identification of viable myocardium. Circulation 1996;94:2674–80.

    PubMed  CAS  Google Scholar 

  43. Udelson JE. Steps forward in the assessment of myocardial viability in left ventricular dysfunction. Circulation 1998;97:833–8.

    PubMed  CAS  Google Scholar 

  44. Samady H, Elefteriades JA, Abbott BG, et al. Failure to improve left ventricular function after coronary revascularization for ischemic cardiomyopathy is not associated with worse outcome. Circulation 1999;100:1298–304.

    PubMed  CAS  Google Scholar 

  45. Udelson JE, Coleman PS, Metherall J, et al. Predicting recovery of severe regional ventricular dysfunction: comparison of resting scintigraphy with thallium 201 and technetium 99m-sestamibi. Circulation 1994;89:2552–61.

    PubMed  CAS  Google Scholar 

  46. Gunning MG, Anagnostopoulos C, Knight CJ, et al. Comparison of 201Tl, 99mTc-tetrofosmin, and dobutamine magnetic resonance imaging for identifying hibernating myocardium. Circulation 1998;98:1869–74.

    PubMed  CAS  Google Scholar 

  47. Cleland JG, Pennell DJ, Ray SG, et al. Myocardial viability as a determinant of the ejection fraction response to carvedilol in patients with heart failure (CHRISTMAS trial): randomised controlled trial. Lancet 2003;362:14–21.

    Article  PubMed  CAS  Google Scholar 

  48. Rahimtoola SH. The hibernating myocardium. Am Heart J 1989; 117:211–21.

    Article  PubMed  CAS  Google Scholar 

  49. Myers JH, Stirling MC, Choy M, Buda AJ, Gallagher KP. Direct measurement of inner and outer wall thickening dynamics with epicardial echocardiography. Circulation 1986;74:164–72.

    PubMed  CAS  Google Scholar 

  50. Lieberman AN, Weiss JL, Jugdutt BI, et al. Two-dimensional echocardiography and infarct size: relationship of regional wall motion and thickening to the extent of myocardial infarction in the dog. Circulation 1981;63:739–46.

    PubMed  CAS  Google Scholar 

  51. Kaul S. There may be more to myocardial viability than meets the eye. Circulation 1995;92:2790–3.

    PubMed  CAS  Google Scholar 

  52. Udelson JE, Konstam MA. Relation between left ventricular remodeling and clinical outcomes in heart failure patients with left ventricular systolic dysfunction. J Card Fail 2003;8:S465–71.

    Article  Google Scholar 

  53. Alhaddad IA, Kloner RA, Hakim I, Garno JL, Brown EJ. Benefits of late coronary artery reperfusion on infarct expansion progressively diminish over time: relation to viable islets of myocytes within the scar. Am Heart J 1996;131:451–7.

    Article  PubMed  CAS  Google Scholar 

  54. Hochman JS, Bulkley BH. Pathogenesis of left ventricular aneurysms: an experimental study in the rat model. Am J Cardiol 1982;50:83–8.

    Article  PubMed  CAS  Google Scholar 

  55. Senior R, Lahiri A, Kaul S. Effect of revascularization on left ventricular remodeling in patients with heart failure from severe chronic ischemic left ventricular dysfunction. Am J Cardiol 2001; 88:624–9.

    Article  PubMed  CAS  Google Scholar 

  56. Sabia PJ, Powers ER, Ragosta M, et al. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med 1992;327:1825–31.

    PubMed  CAS  Google Scholar 

  57. Senior R, Kaul S, Raval U, Lahiri A. Impact of revascularization and myocardial viability determined by nitrate-enhanced Tc-99m sestamibi and Tl-201 imaging on mortality and functional outcome in ischemic cardiomyopathy. J Nucl Cardiol 2002;9:454–62.

    Article  PubMed  Google Scholar 

  58. Di Carli MF, Asgarzadie F, Schelbert HR, et al. Quantitative relation between myocardial viability and improvement in heart failure symptoms after revascularization in patients with ischemic cardiomyopathy. Circulation 1995;92:3436–44.

    Google Scholar 

  59. Kron IL, Flanagan TL, Blackbourne LH, Schroeder RA, Nolan SP. Coronary revascularization rather than cardiac transplantation for chronic ischemic cardiomyopathy. Ann Surg 1989;210:348–52.

    Article  PubMed  CAS  Google Scholar 

  60. Coles JG, Del Campo C, Ahmed SN, et al. Improved long-term survival following myocardial revascularization in patients with severe left ventricular dysfunction. J Thorac Cardiovasc Surg 1981;81:846–50.

    PubMed  CAS  Google Scholar 

  61. Marwick TH, Zuchowski C, Lauer MS, et al. Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability. J Am Coll Cardiol 1999;33:750–8.

    Article  PubMed  CAS  Google Scholar 

  62. Bax JJ, Poldermans D, Elhendy A, et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol 1999;34:163–9.

    Article  PubMed  CAS  Google Scholar 

  63. Mickleborough LL, Maruyama H, Takagi Y, et al. Results of revascularization in patients with severe left ventricular dysfunction. Circulation 1995;92(Suppl):II73–9.

    PubMed  CAS  Google Scholar 

  64. Eitzman D, al-Aouar Z, Kanter HL, et al. Clinical outcome of patients with advanced coronary artery disease after viability studies with positron emission tomography. J Am Coll Cardiol 1992;20:559–65.

    Article  PubMed  CAS  Google Scholar 

  65. Di Carli MF, Davidson M, Little R, et al. Value of metabolic imaging with positron emission tomography for evaluating prognosis in patients with coronary artery disease and left ventricular dysfunction. Am J Cardiol 1994;73:527–33.

    Article  Google Scholar 

  66. Chaudhry FA, Tauke JT, Alessandrini RS, et al. Prognostic implications of myocardial contractile reserve in patients with coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 1999;34:730–8.

    Article  PubMed  CAS  Google Scholar 

  67. Sawada S, Bapat A, Vaz D, et al. Incremental value of myocardial viability for prediction of long-term prognosis in surgically revascularized patients with left ventricular dysfunction. J Am Coll Cardiol 2003;42:2099–105.

    Article  PubMed  Google Scholar 

  68. Sciagra R, Pellegri M, Pupi A, et al. Prognostic implications of Tc-99m sestamibi viability imaging and subsequent therapeutic strategy in patients with chronic coronary artery disease and left ventricular dysfunction. J Am Coll Cardiol 2000;36:739–45.

    Article  PubMed  CAS  Google Scholar 

  69. Elsasser A, Schlepper M, Klovekorn W-P, et al. Hibernating myocardium: an incomplete adaptation to ischemia. Circulation 1997;96:2920–31.

    PubMed  CAS  Google Scholar 

  70. Beanlands RS, Hendry PJ, Masters RG, et al. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998;98(Suppl):II51–6.

    PubMed  CAS  Google Scholar 

  71. Haas F, Haehnel CJ, Picker W, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease. J Am Coll Cardiol 1997;30:1693–700.

    Article  PubMed  CAS  Google Scholar 

  72. Gibbons RJ, Miller TD, Christian TF. Infarct size measured by single photon emission computed tomographic imaging with 99mTc-sestamibi: a measure of the efficacy of therapy in acute myocardial infarction. Circulation 2000;101:101–8.

    PubMed  CAS  Google Scholar 

  73. Verani MS, Jeroudi MO, Mahmarian JJ, et al. Quantification of myocardial infarction during coronary occlusion and myocardial salvage after reperfusion using cardiac imaging with technetium- 99m hexakis 2-methoxyisobutyl-isonitrile. J Am Coll Cardiol 1988;12:1573–81.

    PubMed  CAS  Google Scholar 

  74. Christian TF. The use of perfusion imaging in acute myocardial infarction: application for clinical trials and clinical care. J Nucl Cardiol 1995;2:432–429.

    Google Scholar 

  75. Miller TD, Christian TF, Hopfenspirger MR, et al. Infarct size after acute myocardial infarction measured by quantitative tomographic 99m Tc sestamibi imaging predicts subsequent mortality. Circulation 1995;92:334–41.

    PubMed  CAS  Google Scholar 

  76. Dilsizian V, Freedman NM, Bacharach SL, Perrone-Filardi P, Bonow RO. Regional thallium uptake in irreversible defects. Magnitude of change in thallium activity after reinjection distinguishes viable from nonviable myocardium. Circulation 1992;85:627–34.

    PubMed  CAS  Google Scholar 

  77. Zimmerman R, Mall G, Rauch B, et al. Residual 201Tl activity in irreversible defects as a marker of myocardial viability: clinicopathologic study. Circulation 1995;91:1016–21.

    Google Scholar 

  78. Medrano R, Lowry R, Young J, et al. Assessment of myocardial viability with 99mTc sestamibi in patients undergoing cardiac transplantation: a scintigraphic/pathologic study. Circulation 1996; 94:1010–7.

    PubMed  CAS  Google Scholar 

  79. Dakik HA, Howell JF, Lawrie GM, et al. Assessment of myocardial viability with 99mTc-sestamibi tomography before coronary bypass graft surgery: correlation with histopathology and postoperative improvement in cardiac function. Circulation 1997;96:2892–8.

    PubMed  CAS  Google Scholar 

  80. Maes A, Borgers M, Flameng W, et al. Assessment of myocardial viability in chronic coronary artery disease using technetium-99m sestamibi SPECT: correlation with histologic and positron emission tomographic studies and functional follow-up. J Am Coll Cardiol 1997;29:62–8.

    Article  PubMed  CAS  Google Scholar 

  81. Shirani J, Lee J, Quigg RJ, et al. Relation of thallium uptake to morphologic features of chronic ischemic heart disease: evidence for myocardial remodeling in non-infarct myocardium. J Am Coll Cardiol 2001;38:84–90.

    Article  PubMed  CAS  Google Scholar 

  82. Perrone-Filardi P, Pace L, Prastaro M, et al. Assessment of myocardial viability in patients with chronic coronary artery disease: rest-4-hour-24-hour 201Tl tomography versus dobutamine echocardiography. Circulation 1996;94:2712–9.

    PubMed  CAS  Google Scholar 

  83. Altehoefer C, vom Dahl J, Biedermann M, et al. Significance of defect severity in technetium-99m-MIBI SPECT at rest to assess myocardial viability: comparison with fluorine-18-FDG PET. J Nucl Med 1994;35:569–74.

    PubMed  CAS  Google Scholar 

  84. Tamaki N, Kawamoto M, Tadamura E, et al. Prediction of reversible ischemia after revascularization. Perfusion and metabolic studies with positron emission tomography. Circulation 1995;91:1697–705.

    PubMed  CAS  Google Scholar 

  85. Acampa W, Petretta M, Florimonte L, di Santolo MS, Cuocolo A. Sestamibi SPECT in the detection of myocardial viability in patients with chronic ischemic left ventricular dysfunction: comparison between visual and quantitative analysis. J Nucl Cardiol 2000;7:406–13.

    Article  PubMed  CAS  Google Scholar 

  86. Kitsiou AN, Srinivasan G, Quyyumi AA, et al. Stress-induced reversible and mild-to-moderate irreversible thallium defects: are they equally accurate for predicting recovery of regional left ventricular function after revascularization? Circulation 1998;98:501–8.

    PubMed  CAS  Google Scholar 

  87. Pasquet A, Robert A, D'Hondt AM, et al. Prognostic value of myocardial ischemia and viability in patients with chronic left ventricular ischemic dysfunction. Circulation 1999;100:141–8.

    PubMed  CAS  Google Scholar 

  88. Kim RJ, Wu E, Rafael A, et al. The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 2000;343:1445–53.

    Article  PubMed  CAS  Google Scholar 

  89. Siebelink HM, Blanksma PK, Crijns HJ, et al. No difference in cardiac event-free survival between positron emission tomography- guided and single-photon emission computed tomographyguided patient management: a prospective, randomized comparison of patients with suspicion of jeopardized myocardium. J Am Coll Cardiol 2001;37:81–8.

    Article  PubMed  CAS  Google Scholar 

  90. Auerbach MA, Schoder H, Hoh C, et al. Prevalence of myocardial viability as detected by positron emission tomography in patients with ischemic cardiomyopathy. Circulation 1999;99:2921–6.

    PubMed  CAS  Google Scholar 

  91. Christian TF, Miller TD, Hodge DO, Orszulak TA, Gibbons RJ. An estimate of the prevalence of reversible left ventricular dysfunction in patients referred for coronary artery bypass surgery. J Nucl Cardiol 1997;4:140–6.

    Article  PubMed  CAS  Google Scholar 

  92. Dilsizian V, Shirani J, Lee YHC, et al. Specific binding of [18F] fluorobenzoyl-lisinopril to angiotensin converting enzyme in human heart tissue of ischemic cardiomyopathy [abstract]. Circulation 2001;104:II-694.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James E. Udelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Udelson, J.E., Bonow, R.O. & Dilsizian, V. The historical and conceptual evolution of radionuclide assessment of myocardial viability. J Nucl Cardiol 11, 318–334 (2004). https://doi.org/10.1016/j.nuclcard.2004.03.030

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2004.03.030

Keywords

Navigation