Skip to main content
Log in

Pet myocardial perfusion and glucose metabolism imaging: Part 2-guidelines for interpretation and reporting

  • Published:
Journal of Nuclear Cardiology Aims and scope

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Porenta G, Kuhle W, Czernin J, et al. Semiquantitative assessment of myocardial blood flow and viability using polar map displays of cardiac PET images. J Nucl Med 1992;33:1628–36.

    PubMed  CAS  Google Scholar 

  2. Nekolla SG, Miethaner C, Nguyen N, Ziegler SI, Schwaiger M. Reproducibility of polar map generation and assessment of defect severity and extent assessment in myocardial perfusion imaging using positron emission tomography. Eur J Nucl Med 1998;25: 1313–21.

    Article  PubMed  CAS  Google Scholar 

  3. McCord ME, Bacharach SL, Bonow RO, et al. Misalignment between PET transmission and emission scans: its effect on myocardial imaging. J Nucl Med 1992;33:1209–14; discussion 1214–5.

    PubMed  CAS  Google Scholar 

  4. Bettinardi V, Gilardi MC, Lucignani G, et al. A procedure for patient repositioning and compensation for misalignment between transmission and emission data in PET heart studies. J Nucl Med 1993;34:137–42.

    PubMed  CAS  Google Scholar 

  5. Laubenbacher C, Rothley J, Sitomer J, et al. An automated analysis program for the evaluation of cardiac PET studies: initial results in the detection and localization of coronary artery disease using nitrogen-13-ammonia. J Nucl Med 1993;34:968–78.

    PubMed  CAS  Google Scholar 

  6. Gould KL, Martucci JP, Goldberg DI, et al. Short-term cholesterol lowering decreases size and severity of perfusion abnormalities by positron emission tomography after dipyridamole in patients with coronary artery disease. A potential noninvasive marker of healing coronary endothelium. Circulation 1994;89:1530–8.

    PubMed  CAS  Google Scholar 

  7. Hutchins GD, Schwaiger M, Rosenspire KC, et al. Noninvasive quantification of regional blood flow in the human heart using N-13 ammonia and dynamic positron emission tomographic imaging. J Am Coll Cardiol 1990;15:1032–42.

    PubMed  CAS  Google Scholar 

  8. Krivokapich J, Stevenson LW, Kobashigawa J, Huang SC, Schelbert HR. Quantification of absolute myocardial perfusion at rest and during exercise with positron emission tomography after human cardiac transplantation. J Am Coll Cardiol 1991;18512–7.

    PubMed  CAS  Google Scholar 

  9. Kuhle WG, Porenta G, Huang SC, et al. Quantification of regional myocardial blood flow using 13N-ammonia and reoriented dynamic positron emission tomographic imaging. Circulation 1992;86: 1004–17.

    PubMed  CAS  Google Scholar 

  10. Muzik O, Beanlands RS, Hutchins GD, et al. Validation of nitrogen-13-ammonia tracer kinetic model for quantification of myocardial blood flow using PET. J Nucl Med 1993;34:83–91.

    PubMed  CAS  Google Scholar 

  11. Choi Y, Huang SC, Hawkins RA, et al. A simplified method for quantification of myocardial blood flow using nitrogen-13-ammonia and dynamic PET [see comments]. J Nucl Med 1993;34:488- 97.

    PubMed  CAS  Google Scholar 

  12. Blanksma PK, Willemsen AT, Meeder JG, et al. Quantitative myocardial mapping of perfusion and metabolism using parametric polar map displays in cardiac PET. J Nucl Med 1995;36:153–8.

    PubMed  CAS  Google Scholar 

  13. Schöder H, Campisi R, Ohtake T, et al. Blood flow-metabolism imaging with positron emission tomography in patients with diabetes mellitus for the assessment of reversible left ventricular contractile dysfunction. J Am Coll Cardiol 1999;33:1328–37.

    Article  PubMed  Google Scholar 

  14. Vitale GD, deKemp RA, Ruddy TD, Williams K, Beanlands RSB. Myocardial glucose utilization and optimization of 18F-FDG PET imaging in patients with non-insulin-dependent diabetes mellitus, coronary artery disease, and left ventricular dysfunction. J Nucl Med 2001;42:1730–6.

    PubMed  CAS  Google Scholar 

  15. Tamaki N, Yonekura Y, Yamashita K, et al. Prediction of reversible ischemia after coronary artery bypass grafting by positron emission tomography. J Cardiol 1991;21:193–201.

    PubMed  CAS  Google Scholar 

  16. Choi Y, Brunken RC, Hawkins RA, et al. Factors affecting myocardial 2-[F-18]fluoro-2-deoxy-D-glucose uptake in positron emission tomography studies of normal humans. Eur J Nucl Med 1993;20:308–18.

    Article  PubMed  CAS  Google Scholar 

  17. Mäki M, Luotolahti M, Nuutila P, et al. Glucose uptake in the chronically dysfunctional but viable myocardium. Circulation 1996;93:1658–66.

    PubMed  Google Scholar 

  18. Gropler RJ, Siegel BA, Lee KJ, et al. Nonuniformity in myocardial accumulation of fluorine-18-fluorodeoxyglucose in normal fasted humans [see comments]. J Nucl Med 1990;31:1749–56.

    PubMed  CAS  Google Scholar 

  19. Pagano D, Townend JN, Littler WA, et al. Coronary artery bypass surgery as treatment for ischemic heart failure: the predictive value of viability assessment with quantitative positron emission tomography for symptomatic and functional outcome. J Thor Cardiovasc Surg 1998;115:791–9.

    Article  CAS  Google Scholar 

  20. Gerber BL, Ordoubadi FF, Wijns W, et al. Positron emission tomography using (18)F-fluoro-deoxyglucose and euglycaemic hyperinsulinaemic glucose clamp: optimal criteria for the prediction of recovery of post-ischaemic left ventricular dysfunction. Results from the European Community Concerted Action Multicenter study on use of (18)F-fluoro-deoxyglucose positron emission tomography for the detection of myocardial viability. Eur Heart J 2001;22:1691–701.

    Article  PubMed  CAS  Google Scholar 

  21. Knuuti M, Nuutila P, Ruotsalainen U, et al. Euglycemic hyperinsulinemic clamp and oral glucose load in stimulating myocardial glucose utilization during positron emission tomography. J Nucl Med 1992;33:1255–62.

    PubMed  CAS  Google Scholar 

  22. Ohtake T, Yokoyama I, Watanabe T, et al. Myocardial glucose metabolism in noninsulin-dependent diabetes mellitus patients evaluated by FDG-PET. J Nucl Med 1995;36:456–63.

    PubMed  CAS  Google Scholar 

  23. Ratib O, Phelps ME, Huang SC, et al. Positron tomography with deoxyglucose for estimating local myocardial glucose metabolism. J Nucl Med 1982;23:577–86.

    PubMed  CAS  Google Scholar 

  24. Gambhir SS, Schwaiger M, Huang SC, et al. Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 1989;30:359–66.

    PubMed  CAS  Google Scholar 

  25. Choi Y, Hawkins RA, Huang SC, et al. Parametric images of myocardial metabolic rate of glucose generated from dynamic cardiac PET and 2-[18F]fluoro-2-deoxy-d-glucose studies. J Nucl Med 1991;32:733–8.

    PubMed  CAS  Google Scholar 

  26. Bax JJ, Visser FC, van Lingen A, Visser CA, Teule GJ. Myocardial F-18 fluorodeoxyglucose imaging by SPECT. Clin Nucl Med 1995;20:486–90.

    Article  PubMed  CAS  Google Scholar 

  27. Bax JJ, Visser FC, Cornel JH, et al. Improved detection of viable myocardium with fluorodeoxyglucose-labeled single-photon emission computed tomography in a patient with hibernating myocardium: comparison with rest-redistribution thallium 201-labeled single-photon emission computed tomography. J Nucl Cardiol 1997;4:178–9.

    Article  PubMed  CAS  Google Scholar 

  28. Bax JJ, Wijns W. Fluorodeoxyglucose imaging to assess myocardial viability: PET, SPECT or gamma camera coincidence imaging? [editorial; comment]. J Nucl Med 1999;40:1893–5.

    PubMed  CAS  Google Scholar 

  29. Tillisch J, Brunken R, Marshall R, et al. Reversibility of cardiac wall-motion abnormalities predicted by positron tomography. N Engl J Med 1986;314:884–8.

    PubMed  CAS  Google Scholar 

  30. Marwick TH, Hollman J. Acute myocardial infarction associated with intravenous dipyridamole for rubidium-82 PET imaging. Clin Cardiol 1990;13:230–1.

    Article  PubMed  CAS  Google Scholar 

  31. Carrel T, Jenni R, Haubold-Reuter S, et al. Improvement of severely reduced left ventricular function after surgical revascularization in patients with preoperative myocardial infarction. Eur J Cardiothorac Surg 1992;6:479–84.

    Article  PubMed  CAS  Google Scholar 

  32. Lucignani G, Paolini G, Landoni C, et al. Presurgical identification of hibernating myocardium by combined use of technetium-99m hexakis 2-methoxyisobutylisonitrile single photon emission tomography and fluorine-18 fluoro-2-deoxy-D-glucose positron emission tomography in patients with coronary artery disease. Eur J Nucl Med 1992;19:874–81.

    Article  PubMed  CAS  Google Scholar 

  33. Tamaki N, Kawamoto M, Takahashi N, et al. Prognostic value of an increase in fluorine-18 deoxyglucose uptake in patients with myocardial infarction: comparison with stress thallium imaging. J Am Coll Cardiol 1993;22:1621–7.

    PubMed  CAS  Google Scholar 

  34. Maes A, Flameng W, Nuyts J, et al. Histological alterations in chronically hypoperfused myocardium. Correlation with PET findings. Circulation 1994;90:735–45.

    PubMed  CAS  Google Scholar 

  35. Paolini G, Lucignani G, Zuccari M, et al. Identification and revascularization of hibernating myocardium in angina-free patients with left ventricular dysfunction. Eur J Cardiothorac Surg 1994;8:139–44.

    Article  PubMed  CAS  Google Scholar 

  36. Schwarz E, Schaper J, vom Dahl J, et al. Myocardial hibernation is not sufficient to prevent morphological disarrangements with ischemic cell alterations and increased fibrosis. Circulation 1994; 90:1–378.

    Google Scholar 

  37. vom Dahl J, Eitzman D, Al-Aouar A, et al. Relation of regional function, perfusion, and metabolism in patients with advanced coronary artery disease undergoing surgical revascularization. Circulation 1994;90:2356–66.

    Google Scholar 

  38. Depré C, Vanoverschelde JL, Melin JA, et al. Structural and metabolic correlates of the reversibility of chronic left ventricular ischemic dysfunction in humans. Am J Physiol 1995;268:H1265–75.

    PubMed  Google Scholar 

  39. Maes A, Flameng W, Borgers M, et al. Regional myocardial blood flow, glucose utilization and contractile function before and after revascularization and ultrastructural findings in patients with chronic coronary artery disease. Eur J Nucl Med 1995;22:1299–305.

    Article  PubMed  CAS  Google Scholar 

  40. vom Dahl J, Altehoefer C, Sheehan F, et al. Recovery of regional left ventricular dysfunction after coronary revascularization: impact of myocardial viability assessed by nuclear imaging and vessel patency at follow-up angiography. J Am Coll Cardiol 1996;28:948–58.

    Article  Google Scholar 

  41. Bax JJ, Visser FC, van Lingen A, et al. Metabolic imaging using F18-fluorodeoxyglucose to assess myocardial viability. Int J Card Imaging 1997;13:145–55; discussion 157–60.

    Article  PubMed  CAS  Google Scholar 

  42. Flameng WJ, Shivalkar B, Spiessens B, et al. PET scan predicts recovery of left ventricular function after coronary artery bypass operation. Ann Thorac Surg 1997;64:1694–701.

    Article  PubMed  CAS  Google Scholar 

  43. Haas F, Haehnel CJ, Picker W, et al. Preoperative positron emission tomographic viability assessment and perioperative and postoperative risk in patients with advanced ischemic heart disease [see comments]. J Am Coll Cardiol 1997;30:1693–700.

    Article  PubMed  CAS  Google Scholar 

  44. Beanlands RS, Hendry PJ, Masters RG, et al. Delay in revascularization is associated with increased mortality rate in patients with severe left ventricular dysfunction and viable myocardium on fluorine 18-fluorodeoxyglucose positron emission tomography imaging. Circulation 1998;98:1151–6.

    Google Scholar 

  45. Fath-Ordoubadi F, Pagano D, Marinho NV, et al. Coronary revascularization in the treatment of moderate and severe postischemic left ventricular dysfunction. Am J Cardiol 1998;82:26–31.

    Article  PubMed  CAS  Google Scholar 

  46. Bax JJ, Poldermans D, Elhendy A, et al. Improvement of left ventricular ejection fraction, heart failure symptoms and prognosis after revascularization in patients with chronic coronary artery disease and viable myocardium detected by dobutamine stress echocardiography. J Am Coll Cardiol 1999;34:163–9.

    Article  PubMed  CAS  Google Scholar 

  47. Maes A, Van de Werf F, Nuyts J, et al. Impaired myocardial tissue perfusion early after successful thrombolysis. Impact on myocardial flow, metabolism, and function at late follow-up. Circulation 1995;92:2072–8.

    PubMed  CAS  Google Scholar 

  48. Maes A, Mortelmans L, Nuyts J, et al. Importance of flow/ metabolism studies in predicting late recovery of function following reperfusion in patients with acute myocardial infarction. Eur Heart J 1997;18:954–62.

    PubMed  CAS  Google Scholar 

  49. Yamagishi H, Akioka K, Hirata K, et al. A reverse flow-metabolism mismatch pattern on PET is related to multivessel disease in patients with acute myocardial infarction. J Nucl Med 1999;40:1492–8.

    PubMed  CAS  Google Scholar 

  50. Yamashita K, Tamaki N, Yonekura Y, et al. Quantitative analysis of regional wall motion by gated myocardial positron emission tomography: validation and comparison with left ventriculography. J Nucl Med 1989;30:1775–86.

    PubMed  CAS  Google Scholar 

  51. Yamashita K, Tamaki N, Yonekura Y, et al. Regional wall thickening of left ventricle evaluated by gated positron emission tomography in relation to myocardial perfusion and glucose metabolism. J Nucl Med 1991;32:679–85.

    PubMed  CAS  Google Scholar 

  52. Boyd HL, Gunn RN, Marinho NV, et al. Non-invasive measurement of left ventricular volumes and function by gated positron emission tomography. Eur J Nucl Med 1996;23:1594–602.

    Article  PubMed  CAS  Google Scholar 

  53. Boyd HL, Rosen SD, Rimoldi O, Cunningham VJ, Camici PG. Normal values for left ventricular volumes obtained using gated PET. G Ital Cardiol 1998;28:1207–14.

    PubMed  CAS  Google Scholar 

  54. Hor G, Kranert WT, Maul FD, et al. Gated metabolic positron emission tomography (GAPET) of the myocardium: 18F-FDG-PET to optimize recognition of myocardial hibernation. Nucl Med Commun 1998;19:535–45.

    Article  PubMed  CAS  Google Scholar 

  55. Willemsen AT, Siebelink HJ, Blanksma PK, Paans AM. Automated ejection fraction determination from gated myocardial FDG-PET data. J Nucl Cardiol 1999;6:577–82.

    Article  PubMed  CAS  Google Scholar 

  56. Hattori N, Bengel FM, Mehilli J, et al. Global and regional functional measurements with gated FDG PET in comparison with left ventriculography. Eur J Nucl Med 2001;28:221–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heinrich R. Schelbert, Robert Beanlands, Frank Bengel, Juhani Knuuti, Marcelo DiCarli, Josef Machac or Randolph Patterson.

Additional information

Publication supported by educational grants from Amersham Health, Inc, Bracco Diagnostics, Inc, Bristol-Meyers Squibb Medical Imaging, Inc, CardinalHealth Nuclear Pharmacy Services, Fujisawa Health Care, Inc, GE Medical Systems, Inc, MDS Nordion, Philips Medical Systems, Inc, Siemens Medical Systems, Inc, and Tyco Healthcare/Mallinckrodt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schelbert, H.R., Beanlands, R., Bengel, F. et al. Pet myocardial perfusion and glucose metabolism imaging: Part 2-guidelines for interpretation and reporting. J Nucl Cardiol 10, 557–571 (2003). https://doi.org/10.1016/j.nuclcard.2003.08.002

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.nuclcard.2003.08.002

Keywords

Navigation