Skip to main content
Log in

Elephant body mass cyclicity suggests effect of molar progression on chewing efficiency

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Elephants do not replace deciduous teeth once with permanent teeth as most mammals, but replace a single cheek tooth per jaw-side five times in their lives in a process called molar progression. While this gradual process has been well-documented for the purpose of age determination, a less-considered possible side effect of this progression is that functional chewing surface fluctuates, being larger when two cheek teeth are both partially in use and smaller when only one cheek tooth is used fully. We found that body mass of both breeding and non-breeding female zoo elephants (Elephas maximus, Loxodonta africana) shows a cyclic undulation with peaks separated by many years, which is therefore unrelated to reproduction or annual seasonality. We propose variation in functional chewing surface, resulting chew¬ing efficiency, and resulting increased food intake and/or digestive efficiency as the underlying cause. As elephants reproduce all year-round and thus are not synchronized in their molar progression pattern, climate-related fluctuations in resource availability are likely to mask this pattern in free-ranginganimals. In contrast, it emerges under the comparatively constant zoo conditions, and illustrates the relevance of the dental apparatus for herbivorous mammals. The combination of variable chewing efficiency and resource availability in free-ranging elephants may render these species particularly prone to reported inter-individual fitness differences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anders, U., von Koenigswald, W., 2013. Increasing and decreasing functional area of the dentition (FAD) of Mammuthus primigenius. Palãontol. Zschr. 87, 515–527.

    Google Scholar 

  • Bjorndal, K.A., Bolten, A.B., Moore, J.E., 1990. Digestive fermentation in herbivores: effect of food particle size. Physiol. Zool. 63, 710–721.

    Article  Google Scholar 

  • Brown, J.L., 2014. Comparative reproductive biology of elephants. In: Holt, W.V. (Ed.), Reproductive Sciences in Animal Conservation. Springer Science+Business Media, New York, pp. 135–169.

    Google Scholar 

  • Chusyd, D.E., Brown, J.L., Hambly, C., Johnson, M.S., Morfeld, K.A., Patki, A., Speakman, J.R., Allison, D.B., Nagy, T.R., 2018. Adiposity and reproductive cycling status in zoo African elephants. Obesit. 26, 103–110.

    Article  CAS  Google Scholar 

  • Clauss, M., Loehlein, W., Kienzle, E., Wiesner, H., 2003. Studies on feed digestibilities in captive Asian elephants (Elephas maximus). J. Anim. Physiol. Anim. Nutr. 87, 160–173.

    Article  CAS  Google Scholar 

  • Clauss, M., Steinmetz, H., Eulenberger, U., Ossent, P., Zingg, R., Hummel, J., Hatt, J.M., 2007a. Observations on the length of the intestinal tract of African Loxodonta africana (Blumenbach 1797) and Asian elephants Elephas maximus (Linné 1735). Eur. J. Wildl. Res. 53, 68–72.

    Article  Google Scholar 

  • Clauss, M., Streich, W.J., Schwärm, A., Ortmann, S., Hummel, J., 2007b. The relationship of food intake and ingesta passage predicts feeding ecology in two different megaherbivore groups. Oiko. 116, 209–216.

    Article  Google Scholar 

  • Clauss, M., Steuer, P., Erlinghagen-Lückerath, K., Kaandorp, J., Fritz, J., Südekum, K.H., Hummel, J., 2015. Faecal particle size: digestive physiology meets herbivore diversity. Comp. Biochem. Physiol.. 179, 182–191.

    Article  CAS  Google Scholar 

  • Codron, J., Codron, D., Sponheimer, M., Kirkman, K., Duffy, K.J., Raubenheimer, E.J., Mé lice, J.L., Grant, R., Clauss, M., Lee-Thorp, J.A., 2012. Stable isotope series from elephant ivory reveal lifetime histories of a true dietary generalist. Proc. R.SOC.. 279, 2433–2441.

    Article  Google Scholar 

  • Cornwall, I.W., 1956. Bones forthe Archaeologist. Phoenix House Ltd, London.

    Google Scholar 

  • Fischer, M., Houston, E.W., OSullivan, T., Read, B., Jackson, P., 1993. Selected weights for ungulates and the Asian elephant Elephas maximus at St Louis Zoo. Int. Zoo Yb. 32, 169–173.

    Article  Google Scholar 

  • Foley, C.A.H., Papageorge, S., Wasser, S.K., 2001. Noninvasive stress and reproductive measures of social and ecological pressures in free ranging African elephants. Conserv. Biol. 15, 1134–1142.

    Article  Google Scholar 

  • Fowler, M.E., Mikota, S.K., 2006. Biology, Medicine, and Surgery of Elephants. Blackwell Publishing, Iowa, USA.

    Book  Google Scholar 

  • Frade, F., 1955. Ordre des proboscidiens. Traité de Zoologi. 17, 715–783.

    Google Scholar 

  • Freeman, E.W., Guagnano, G., Olson, D., Keele, M., Brown, J.L., 2009. Social factors influence ovarian acyclicity in captive African elephants (Loxodonta africana). Zoo Biol. 28, 1–15.

    Article  PubMed  Google Scholar 

  • Fritz, J., Hummel, J., Kienzle, E., Arnold, C., Nunn, C., Clauss, M., 2009. Comparative chewing efficiency in mammalian herbivores. Oiko. 118, 1623–1632.

    Article  Google Scholar 

  • Fritz, J., Streich, W.J., Schwärm, A., Clauss, M., 2012. Condensing results of wet sieving analyses into a single data: a comparison of methods for particle size description. J. Anim. Physiol. Anim. Nutr. 96, 783–797.

    Article  Google Scholar 

  • Grandl, F., Schwärm, A., Ortmann, S., Furger, M., Kreuzer, M., Clauss, M., 2018. Kinetics of solutes and particles of different size in the digestive tract of cattle of 0.5 to 10 years of age, and relationships with methane production. J. Anim. Physiol. Anim. Nutr. 102, 639–651.

    Article  CAS  Google Scholar 

  • Hanks, J., 1972. Growth of the African elephant (Loxodonta africana). E. Afr. Wildl. J. 10, 251–272.

    Article  Google Scholar 

  • Hatt, J.M., Clauss, M., 2006. Feeding Asian and African elephants (Elephas maximus and Loxodonta africana) in captivity. Int. Zoo Yb. 40, 88–95.

    Article  Google Scholar 

  • Ikebe, K., Matsuda, K.I., Kagawa, R., Enoki, K., Yoshida, M., Maeda, Y., Nokubi, T., 2011. Association of masticatory performance with age, gender, number of teeth, occlusal force and salivary flow in Japanese older adults: is ageing a risk factor for masticatory dysfunction? Arch. Oral Biol. 56, 991–996.

    Article  Google Scholar 

  • Jarofke, D., 2007. Jarofkes Elefantenkompendium. Schilling Verlag, Münster.

    Google Scholar 

  • Johnson, O.W., Buss, I.O., 1965. Molariform teeth of male African elephants in relation to age, body dimensions, and growth. J. Mammal. 46, 373–384.

    Article  CAS  PubMed  Google Scholar 

  • Kalita, S.N., Sarma, M., 2003. Anatomy of elephant: some important features. In: Das, D. (Ed.), Health Care, Breeding and Management of Asian Elephants. College of Veterinary Science, Assam Agricultural University, Assam, India, Assam, India.

    Google Scholar 

  • Keet, D.F., 1991. An approach to the autopsy of the African elephant. In: Van Heerden, J., Penzhorn, B.L. (Eds.), Symposium on The African Elephant as a Game Ranch Animal, 95–104.

    Google Scholar 

  • King, S.J., Arrigo-Nelson, S.J., Pochron, S.T., Semprebon, G.M., Godfrey, L.R., Wright, P.C. Jernvall, J., 2005. Dental senescence in a long-lived primate links infant survival to rainfall. PNA. 102, 16579–16583.

    Article  CAS  Google Scholar 

  • Kojola, L., Helle, T., Huhta, E., Niva, A., 1998. Foraging conditions, tooth wear and herbivore body reserves: a study of female reindeer. Oecologi. 117, 26–30.

    Article  Google Scholar 

  • Krumrey, W.A., Buss, I.O., 1968. Age estimation, growth, and relationships between body dimensions of the female African elephant. J. Mammal. 49, 22–31.

    Article  CAS  PubMed  Google Scholar 

  • Lang, E.M., 1980. Observations on growth and molar change in the African elephant. Afr. J. Ecol. 18, 217–234.

    Article  Google Scholar 

  • Lang, E.M., 1994. Wachstum und Zahnwechsel beim Afrikanischen Elefanten (Loxodonta africana) im Tiergarten. Zool. Garten N. F. 64, 57–77.

    Google Scholar 

  • Laws, R.M., 1966. Age criteria forthe African elephant, Loxodonta a. africana. E. Afr. Wildl. J. 4, 1–37.

    Article  Google Scholar 

  • Lee, P.C., Sayialel, S., Lindsay, W.K., Moss, C.J., 2012. African elephant age determination from teeth: validation from known individuals. Afr. J. Ecol. 50, 9–20.

    Article  Google Scholar 

  • Lee, P.C., Bussière, L.F., Webber, C.E., Poole, J.H., Moss, C.J., 2013. Enduring consequences of early experiences: 40 year effects on survival and success among African elephants (Loxodonta africana). Biol. Lett. 9, 20130011.

  • Logan, M., 2003. Effect of tooth wear on the rumination-like behavior, or merycism, of free-ranging koalas (Phascolarctos cinerais).]. Mammal. 84, 897–902.

    Article  Google Scholar 

  • Maglio, V., 1973. Origin and evolution of the elephantidae. Trans. Am. Phil. Soc. 63, 1–149.

    Article  Google Scholar 

  • Momin Khan, M.K., 1977. Aging of elephants: Estimation by foot size in combination with tooth wear and body dimensions. Malayan Nature Journa. 30, 15–23.

    Google Scholar 

  • Pérez-Barbería, F.J., Gordon, I.J., 1998. The influence of molar occlusal surface area on the voluntary intake, digestion, chewing behaviour and diet selection of red deer. J.Zool. 245, 307–316.

    Article  Google Scholar 

  • Pokharel, S.S., Seshagiri, P.B., Sukumar, R., 2017. Assessment of season-dependent body condition scores in relation to faecal glucocorticoid metabolites in free-ranging Asian elephants. Conserv. Physiol. 5, cox039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • R Core Team, 2015. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Ranjeewa, A.D., Pastorini, J., Isler, K., Weerakoon, D.K., Kottage, H.D., Fernando, P., 2018. Decreasing reservoir water levels improve habitat quality for Asian elephants. Mamm. Biol. 88, 130–137.

    Article  Google Scholar 

  • Rasmussen, H.B., Wittemyer, G., Douglas-Hamilton, I., 2005. Estimating age of immobilized elephants from teeth impressions using dental silicon. Afr. J. Ecol. 43, 215–219.

    Article  Google Scholar 

  • Roth, V.L., Shoshani, J., 1988. Dental identification and age determination in Elephas maximus.]. Zool. 214, 567–588.

    Article  Google Scholar 

  • Schiffmann, C., Clauss, M., Fernando, P., Pastorini, J., Wendler, P., Ertl, N., Hoby, S., Hatt, J.M., 2018. Body condition scores in European zoo elephants (Elephas maximus and Loxodonta africana) - status quo and influencing factors. J. Zoo Aquar. Res. 6, 91–103.

    Google Scholar 

  • Shoshani, J., 1992. Elefanten- Enzyklopädie der Tierwelt. Jahr-Verlag GmbH & Co. Hamburg, Hamburg.

    Google Scholar 

  • Shrader, A.M., Ferreira, S.M., Van Aarde, R.J., 2006. Digital photogrammetry and laser rangeflnder techniques to measure African elephants. S. Afr. J. Wildl. Res. 36, 1–7.

    Google Scholar 

  • Sikes, S.K., 1971. The Natural History of the African Elephant. Weidenfeld and Nicolson, London.

    Google Scholar 

  • Skogland, T., 1988. Tooth wear by food limitation and its life history consequences in wild reindeer. Oiko. 51, 238–242.

    Article  Google Scholar 

  • Stansfleld, F.J., 2015. A novel objective method of estimating the age of mandibles from African elephants (Loxodonta africana africana). PLoS One 10, e0124980.

    Article  CAS  Google Scholar 

  • Ungar, P.S., 2010. Mammal Teeth: Origin, Evolution and Diversity. John Hopkins University Press, Baltimore.

    Google Scholar 

  • Venkataraman, V.V., Glowacka, H., Fritz, J., Clauss, M., Seyoum, C., Nguyen, N., Fashing, P.J., 2014. Effects of dietary fracture toughness and dental wear on chewing efficiency in geladas (Theropíthecus gelada). Am. J. Phys. Anthropol. 155, 17–32.

    Article  PubMed  Google Scholar 

  • Walker, C.C.F., Schlegel, M.L., 2013. Case study: relationship between weight gain and offspring sex in African bush elephants (Loxodonta africana africana) at the San Diego Zoo Safari Park. 10th Conference on Zoo and Wildlife Nutrition.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Clauss.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiffmann, C., Hatt, JM., Hoby, S. et al. Elephant body mass cyclicity suggests effect of molar progression on chewing efficiency. Mamm Biol 96, 81–86 (2019). https://doi.org/10.1016/j.mambio.2018.12.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.12.004

Keywords

Navigation