Skip to main content

Periodic resource scarcity and potential for interspecific competition influences distribution of small carnivores in a seasonally dry tropical forest fragment

Abstract

Small, isolated, and disturbed forest fragments potentially offer valuable habitats for small carnivore conservation. Yet the influence of resource availability—critical for survival and reproduction—on small carnivore habitat use within these modified environments is poorly understood. We conducted camera-trap surveys within a seasonally dry tropical forest fragment (148 km2) in northeastern Thailand to better understand the influence resource availability has on small carnivore habitat use within fragmented areas. Species occupancy models including both habitat and resource variables were assessed across periods of high and low resource availability (fruit abundance and rodent biomass). Species with similar resource or habitat preferences may also compete when resources are low. Therefore, we tested species with shared preferences for patterns of spatial co-occurrence and temporal overlap. Fruit availability influenced the distribution of common palm civet (Paradoxurus hermaphroditus), while rodent biomass influenced Asiatic jackal (Canis aureus), leopard cat (Prionailurus bengalensis), and small Indian civet (Viverricula indica), but only during annual periods of scarcity. In contrast, small Asian mongoose (Herpestes javanicus) was highly selective for a specific habitat (dry dipterocarp forest) regardless of seasonal fluctuations in food availability. Occupancy increased for all species during periods of resource scarcity, with leopard cat and Asiatic jackal experiencing the greatest increases (139% and 58%, respectively). Species with shared resource and habitat preferences appeared to avoid each other, either spatially or temporally. For example, leopard cat and Asiatic jackal co-occurred spatially less than would be expected, though only when rodents were scarce. Similarly, small Indian civet and small Asian mongoose, which used the same habitat and co-occurred spatially at a rate greater than expected, were active at different times. Our results indicate that seasonal resource fluctuations and interspecific interactions strongly influence the distribution of sympatric small carnivores in a fragmented forest.

This is a preview of subscription content, access via your institution.

References

  • Arnold, T.W., 2010. Uninformative parameters and model selection using akaike’s information criterion. J. Wildl. Manage 74, 1175–1178.

    Article  Google Scholar 

  • Ashton, P.S., Reinmar, R., Kassim, A.R., 2014. On the Forests of Tropical Asia: Lest the Memory Fade. Kew Publishing.

    Google Scholar 

  • Barlow, J., Gardner, T.A., Araujo, I.S., Avila-Pires, T.C., Bonaldo, A.B., Costa, J.E., et al., 2007. Quantifying the biodiversity value of tropical primary, secondary, and plantation forests. Proc. Natl. Acad. Sci. U. S.A. 104, 18555–18560.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barton, K., Availableat: 2018. MuMIn: Multi-model Inference. R Package Version 1.40.4. http://CRAN.R-project.org/package=MuMIn.

    Google Scholar 

  • Börger,.L, Dalziel, B.D., Fryxell, J.M., 2008. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecol. Lett. 11, 637–650.

    Google Scholar 

  • Braczkowski, A.R., Balme, G.A., Dickman, A., Fattebert, J., Johnson, P., Dickerson, T., Macdonald, D.W., Hunter, L., 2016. Scent lure effect on camera-trap based leopard density estimates. PLoS One 11, e0151033.

  • Bregman, T.P., Lees, A.C., Seddon, N., MacGregor, H.E.A., Darski, B., Aleixo, A., et al., 2015. Species interactions regulate the collapse of biodiversity and ecosystem function in tropical forest fragments. Ecology 96, 2692–2704.

    Article  PubMed  Google Scholar 

  • Bu, H., Wang, F., McShea, W.J., Lu, Z., Wang, D., Li, S., 2016. Spatial co-occurrence and activity patterns of mesocarnivores in the temperate forests of southwest China. PLoS One 11, e0164271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: a Practical Information-theoretic Approach. Springer, New York.

    Google Scholar 

  • Cablk, M.E., Sagebie, Heaton J.S., Valentin, C., 2008. Olfaction-based detection distance: a quantitative analysis of how far away dogs recognize torotise odor and follow it to source. Sensors 8, 2208–2222.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carbone, C., Gittleman, J.L., 2002. A common rule for the scaling of carnivore density. Science 295, 2273–2276.

    Article  CAS  PubMed  Google Scholar 

  • Carbone, C., Mace, G.M., Roberts, S.C., Macdonald, D.W., 1999. Energetic constraints on the diet of terrestrial carnivores. Nature 402, 286–288.

    Article  CAS  PubMed  Google Scholar 

  • Chiang, P., Pei, K.J., Vaughan, M.R., Li, C., 2012. Niche relationships of carnivores in a subtropical primary forest in southern Taiwan. Zool. Stud. 51, 500–511.

    Google Scholar 

  • Chutipong, W., Steinmetz, R., Savini, T., Gale, G.A., 2017. Assessing resource and predator effects on habitat use of tropical small carnivores. Assess. Large Mamm. Potential Tululujia Wildl. Reserve Southwest. Ethiop. 62, 21–36, http://dx.doi.org/10.1007/s13364-016-0283-z.

    Google Scholar 

  • Chutipong, W., Tantipisanuh, N., Ngoprasert, D., Lynam, A.J., Steinmetz, R., Jenks, K.E., et al., 2014. Current distribution and conservation status of small carnivores in Thailand: a baseline review. Small Carniv. Conserv. 51, 96–136.

    Google Scholar 

  • Clavel, J., Julliard, R., Devictor, V., 2011. Worldwide decline of specialist species: toward a global functional homogenization? Front. Ecol. Environ. 9, 222–228.

    Article  Google Scholar 

  • Crooks, K.R., Soulé, M.E., 1999. Mesopredator release and avifaunal extinctions in a fragmented system. Nature 400, 563–566.

    Article  CAS  Google Scholar 

  • Di Bitetti, M.S., De Angelo, C.D., Di Blanco, Y.E., Paviolo, A., 2010. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecol. 36, 403–412.

    Article  Google Scholar 

  • Di Bitetti, M.S., Di Blanco, Y.E., Pereira, J.A., Paviolo, A., Pérez, I.J., 2009. Time partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and Pampas foxes (Lycalopex gymnocercus). J. Mammal. 90, 479–490.

    Article  Google Scholar 

  • Donadio, E., Buskirk, S.W., 2006. Diet, morphology, and interspecific killing in carnivora. Am. Nat. 167, 524–536.

    Article  PubMed  Google Scholar 

  • Efford, M.G., 2015. Secr: Spatially Explicit Capture-recapture Models. R Package Version 2.9.5. http://CRAN.R-project.org/package=secr.

    Google Scholar 

  • Estes, JA, Terbourgh, J., Brashares, J.S., Power, M.E., Berger, J., Bond, W.J., et al., 2011. Trophic downgrading of planet Earth. Science 333, 301–306.

    Article  CAS  PubMed  Google Scholar 

  • Fahrig, L., Rytwinski, T., 2009. Effects of roads on animal abundance: and empirical review and synthesis. Ecol. Soc. 14, 21.

    Article  Google Scholar 

  • Ferguson, S.H., Taylor, M.K., Born, E.W., Rosing-Asvid, A., Messier, F., 1999. Determinants of home range size for polar bears (Ursus maritimus). Ecol. Lett. 2, 311–318.

    Article  PubMed  Google Scholar 

  • Fiske, I.J., Chandler, R.B., Royle, JA, 2011. Unmarked: Models for Data From Unmarked Animals. http://CRAN.R-project.org/package=unmarked.

    Google Scholar 

  • Fuller, T.K., Sievert, P.R., 2001. Carnivore demography and the consequences of changes in prey availability. In: Gittleman, J.L., Funk, S.M., Macdonald, D.W., Wayne, R.K. (Eds.), Carnivore Conservation. Cambridge University Press, pp. 163–177.

    Google Scholar 

  • Gelman, A., 2008. Scaling regression inputs by dividing by two standard deviations. Stat. Med. 27, 2865–2873.

    Article  PubMed  Google Scholar 

  • Gerber, B.D., Karpanty, S.M., Kelly, M.U., 2012a. Evaluating the potential biases in carnivore capture-recapture studies associated with the use of lure and varying density estimation techniques using photographic-sampling data of the Malagasy civet. Pop. Ecol. 54, 43–54.

    Article  Google Scholar 

  • Gerber, B.D., Karpanty, S.M., Randrianantenaina, J., 2012b. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. J. Mammal. 93, 667–676.

    Article  Google Scholar 

  • Giam, X., Clements, G.R., Aziz, S.A., Chong, K.Y., Miettinen, J., 2011. Rethinking the ‘back to wilderness’ concept for Sundaland’s forests. Biol. Conserv. 144, 3149–3152.

    Article  Google Scholar 

  • Gittleman, J.L., Harvey, P.H., 1982. Carnivore home-range size, metabolic needs and ecology. Behav. Ecol. Sociolbiol. 10, 57–63.

    Article  Google Scholar 

  • Grassman, L.I., Tewes, M.E., Silvy, N.J., Kreetiyutanont, K., 2005. Spatial organization and diet of the leopard cat (Prionailurus bengalensis) in north-central Thailand. J. Zool. 266, 45–54, http://dx.doi.org/10.1017/S095283690500659X.

    Article  Google Scholar 

  • Griffith, D.M., Veech, JA, Marsh, C.J., 2016. Cooccur: probabilistic species co-occurrence analysis in R. J. Stat. Softw. 69, 1–17.

    Article  Google Scholar 

  • Hirsch, B.T., 2010. Tradeoff between travel speed and olfactory food detection in ring-tailed coatis (Nasua nasua). Ethology 116, 671–679.

    Google Scholar 

  • Hoyle, M., Harborne, A.R., 2005. Mixed effects of habitat fragmentation on species richness and community structure in a microarthropod microecosystem. Ecol. Entomol. 30, 684–691.

    Article  Google Scholar 

  • Hunter, M.D., Price, P.W., 1992. Playing chutes and ladders: heterogeneity and the relative roles of bottom-up and top-down forces in natural communities. Ecology 73, 724–732.

    Google Scholar 

  • Karanth, K.U., Sunquist, M.E., 2000. Behavioural correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus), and dhole (Cuon alpinus) in Nagarahole. India. J. Zool. 250, 255–265.

    Article  Google Scholar 

  • Joshi, A.R., Smith, J.L.D., Cuthbert, F.J., 1995. Influence of food distribution and predation pressure on spacing behavior in palm civets. J. Mamm. 76, 1205–1212.

    Article  Google Scholar 

  • Lambert, T.D., Malcolm, J.R., Zimmerman, B.L., 2006. Amazonian small mammal abundances in relation to habitat structure and resource abundance. J. Mammal. 87, 766–776.

    Article  Google Scholar 

  • Lanski, J., Heltai, M., 2010. Food preferences of golden jackals and sympatric red foxes in European temperate climate agricultural area (Hungary). Mammalia 74, 267–273.

    Google Scholar 

  • Loveridge, A.J., Macdonald, D.W., 2003. Niche separation in sympatric jackals (Canis mesomelas and Canis adustus). J. Zool. 259, 143–153.

    Article  Google Scholar 

  • Loveridge, A.J., Valeix, M., Davidson, Z., Murindagomo, F., Fritz, H., Macdonald, D.W., 2009. Changes in home range size of African lions in relation to pride size and prey biomass in a semi-arid savanna. Ecography 32, 953–962.

    Google Scholar 

  • MacKenzie, D.I., Nichols, J.D., Royle, JA, Pollock, K.H., Bailey, L.L., Hines, J.E., 2006. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence. Elsevier, San Diego.

    Google Scholar 

  • Mahmood, T., Hussain, I., Nadeem, M.S., 2011. Population estimates, habitat preference and the diet of small Indian mongoose (Herpestes javanicus) in Potohar Plateau, Pakistan. Pakistan J. Zool. 43, 103–111.

    Google Scholar 

  • Mahmood, T., Niazi, F., Nadeem, M.S., 2013. Diet composition of Asiatic jackal (Canis aureus) in Margallah Hills National Park, Islamabad, Pakistan. J. Anim. Plant Sci. 23, 444–456.

    CAS  Google Scholar 

  • Meredith, M., Ridout, M., 2017. Estimates of Coefficient of Overlapping for Animal Activity. patterns http://CRAN.R-project.org/package=overlap.

    Google Scholar 

  • Messier, F., 1985. Social organization, spatial distribution, and population density of wolves in relation to moose density. Can. J. Zool. 63, 1068–1077.

    Article  Google Scholar 

  • Mitchell, M.S., Powell, RA, 2004. A mechanistic home range model for optimal use of spatially distributed resources. Ecol. Model. 177, 209–232.

    Article  Google Scholar 

  • Morellet, N., Bonefant, C., Börger, L., Ossi, F., Cagnacci, F., Heurich, M., Kjellander, P., Linnell, J.D., Nicoloso, S., Sustr, P., Urbano, F., Mysterud, A., 2013. Seasonality, weather and climate affect home range size in roe deer across a wide latitudinal gradient within Europe. J. Anim. Ecol. 82, 1326–1339.

    Article  PubMed  Google Scholar 

  • Morin, P.J., 1999. Community Ecology. Blackwell Science, Inc.

    Google Scholar 

  • Nakashima, Y., Nakabayashi, M., Sukor, JA, 2013. Space use, habitat selection, and day-beds of the common palm civet (Paradoxurus hermaphroditus) in human-modified habitats in Sabah, Borneo. J. Mammal. 94, 1169–1178.

    Article  Google Scholar 

  • O’Brien, T.G., Kinnaird, M.F., Wibisono, H.T., 2003. Crouching tigers, hidden prey: sumatran tiger and prey populations in a tropical forest landscape. Anim. Conserv. 6, 131–139.

    Article  Google Scholar 

  • Oliver, K., Ngoprasert, D., Savini, T., 2019. Slow Lori’s density in a fragmented, disturbed dry forest, north-east Thailand. Am. J. Primatol., e22957, http://dx.doi.org/10.1002/ajp.22957.

    Google Scholar 

  • Ostfeld, R.S., Keesing, F., 2000. Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Trends Ecol. Evolut. 15, 232–237.

    Article  CAS  Google Scholar 

  • Otis, D.L., Burnham, K.P., White, G.C., Anderson, D.R., 1978. Statistical inference from capture data on closed animal populations. Wildl. Monogr. 62, 1–135.

    Google Scholar 

  • Packer, C., 1986. The ecology of sociality in felids. In: Rubenstein, D.I., Wrangham, R.W. (Eds.), Ecological Aspects of Social Evolution: Birds and Mammals. Princeton Univ. Press.

    Google Scholar 

  • Palomares, F., Caro, T.M., 1999. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508.

    Article  CAS  PubMed  Google Scholar 

  • Pimsai, U., Pearch, M.J., Satasook, C., Bumrungsri, S., Bates, P.J.J., 2014. Murine rodents (Rodentia: murinae) of the Myanmar-Thai-Malaysian peninsula and Singapore: taxonomy, distribution, ecology, conservation status, and illustrated identification keys. Bonn Zool. Bull. 63, 15–114.

    Google Scholar 

  • Pitman, R.T., Swanepoel, L.H., Hunter, L., Slotow, R., Balme, G.A., 2015. The importance of refugia, ecological traps, and scale for large carnivore management. Biodivers. Conserv. 24, 1975–1987.

    Article  Google Scholar 

  • R Development Core Team, 2016. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria http://www.R-project.org/.

    Google Scholar 

  • Rajaratnam, R., Sunquist, M., Rajaratnam, L, Ambu, L, 2007. Diet and habitat selection of the leopard cat (Prionailurus bengalensis borneoensis) in an agricultural landscape in Sabah, Malaysian Borneo. J. Trop. Ecol. 23, 209, http://dx.doi.org/10.1017/S0266467406003841.

    Article  Google Scholar 

  • Reed, S.E., Bidlack, A.L., Hurt, A., Getz, W.M., 2011. Detection distance and environmental factors in conservation detection dog surveys. J. Wildl. Manage. 75, 243–251.

    Article  Google Scholar 

  • Ridout, M.S., Linkie, M., 2009. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–337.

    Article  Google Scholar 

  • Ripple, W.J., Estes, JA, Beschta, R.L., Wilmers, C.C., Ritchie, E.G., Hebblewhite, M., et al., 2014. Status and ecological effects of the world’s largest carnivores. Science 343, 1241484.

    PubMed  Google Scholar 

  • Ritchie, E.G., Johnson, C.N., 2009. Predator interactions, mesopredator release and biodiversity conservation. Ecol. Lett. 12, 982–998.

    Article  PubMed  Google Scholar 

  • Sˇálek, M., Kreisinger, J., Sedlácek, F., Albrecht, T., 2010. Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape? Landsc. Urban Plan. 98, 86–91.

    Article  Google Scholar 

  • Salo, P., Nordström, M., Thomson, R.L., Korpimäki, E., 2008. Risk induced by a native top predator reduces alien mink movements. J. Anim. Ecol. 77, 1092–1098.

    Article  PubMed  Google Scholar 

  • Sarawee, A., Nakhon Ratchasima. Unpublished thesis 2008. Diet and Habitat Use of Viverrid Group at Sakaerat Environmental Research Station.

    Google Scholar 

  • Satgé, J., Teichman, K., Cristescu, B., 2017. Competition and coexistence in a small carnivore guild. Oecologia 184, 873–884.

    Article  PubMed  Google Scholar 

  • Savini, T., Boesch, C., Reichard, U.H., 2008. Home-range characteristics and the influence of seasonality on female reproduction in white-handed gibbons (Hylobates lar)at Khao Yai National Park, Thailand. Am. J. Phys. Anthropol. 135, 1–12, http://dx.doi.org/10.1002/ajpa.20578.

    Article  PubMed  Google Scholar 

  • Schuette, P., Wagner, A.P., Wagner, M.E., Creel, S., 2012. Occupancy patterns and niche partitioning within a diverse carnivore community exposed to anthropogenic pressures. Biol. Conserv. 158, 301–312.

    Article  Google Scholar 

  • Scognamillo, D., Maxit, I.E., Sunguist, M., Polisar, J., 2003. Coexistence of jaguar (Panthera onca) and puma (Puma concolor) in a mosaic landscape in the Venezuelan llanos. J. Zool. 259, 269–279.

    Article  Google Scholar 

  • Shehzad, W., Riaz, T., Nawaz, M.A., Miquel, C., Poillot, C., Shah, S.A., Taberlet, P., 2012. Carnivore diet analysis based on next-generation sequencing: application to the leopard cat (Prionailurus bengalensis) in Pakistan. Mol. Ecol., 1951–1965, http://dx.doi.org/10.1111/j.1365-294X.2011.05424.x.

    Google Scholar 

  • Shenkut, M., Mebrate, A., Balakrishnan, M., 2006. Distribution and abundance of rodents in farmlands: a case study in Alleltu Woreda, Ethiopia. Ethiop. J. Sci. 29, 63–70.

    Google Scholar 

  • Sodhi, N.S., Pin, L., Clements, R., Wanger, T.C., Hill, J.K., Hamer, K.C., Clough, Y., Tscharntke, T., Rose, M., Posa, C., Ming, T., 2010. Conserving Southeast Asian forest biodiversity in human-modified landscapes. Biol. Conserv. 143, 2375–2384, http://dx.doi.org/10.1016/j.biocon.2009.12.029.

    Article  Google Scholar 

  • Suwanrat, J., Artchawakom, T., Suwanwaree, P., 2011. Mammal Diversity Study Using Camera Trap at Sakaerat Environmental Research Station. Poster presented at the 32nd Thailand Wildlife Seminar, Bangkok, Thailand.

    Google Scholar 

  • Tabarelli, M., Silva, M.J.C., Gascon, C., 2004. Forest fragmentation, synergisms and the impoverishment of Neotropical forests. Biodivers. Conserv. 13, 1419–1425.

    Article  Google Scholar 

  • Tantipisanuh, N., Gale, G.A, 2013. Representation of threatened vertebrates by a protected area system in Southeast Asia: the importance of non-forest habitats. Raffles Bull. Zool. 61, 359–395.

    Google Scholar 

  • Terborgh, J., 1986. Keystone plant resources in the tropical forest. In: Soulé, M.E. (Ed.), Conservation Biology: The Science of Scarcity and Diversity. Sinauer Associates, Inc., pp. 330–344.

    Google Scholar 

  • Thompson, C.M., Gese, E.M., 2007. Food webs and intraguild predation: community interactions of a native mesocarnivore. Ecology 88, 334–346.

    Article  PubMed  Google Scholar 

  • Veech, J.A., 2013. A probabilistic model for analysing species co-occurrence. Glob. Ecol. Biogeogr. 22, 252–260.

    Article  Google Scholar 

  • Viana, D.S., Granados, J.E., Fandos, P., Pérez, J.M., Cano-Manuel, F.J., Burón, D., Fandos, G., Aguado, M.A.P., Figuerola, J., Soriguer, R.C., 2018. Linking seasonal home range size with habitat selection and movement in a mountain ungulate. Mov. Ecol. 6, 1.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vieira, E.M., Port, D., 2007. Niche overlap and resource partitioning between two sympatric fox species in southern Brazil. J. Zool. 272, 57–63.

    Article  Google Scholar 

  • Wang, H., Fuller, T.K., 2003. Food habits of foursympatric carnivores in southeastern China. Mammalia 67, 513–519.

    Google Scholar 

  • Wells, K., Kalko, E.K.V., Lakim, M.B., Pfeiffer, M., 2007. Effects of rain forest logging on species richness and assemblage composition of small mammals in Southeast Asia. J. Biogeogr. 34, 1087–1099.

    Article  Google Scholar 

  • White, T.C.R., 1978. The importance of a relative shortage of food in animal ecology. Oecologia 33, 71–86.

    Article  CAS  PubMed  Google Scholar 

  • Wiens, J.A., 1993. Fat times, lean times and competition among predators. Trends Ecol. Evol. (Amst.) 8, 348–349.

    Article  CAS  Google Scholar 

  • Wolf, C., Ripple, W.J., 2016. Prey depletion as a threat to the world’s large carnivores. R. Soc. Open Sci. 3, 160252.

    Article  PubMed  PubMed Central  Google Scholar 

  • Woodroffe, R., Davies-Mostert, H., Ginsberg, J., Graf, J., Leigh, K., McCreery, K., et al., 2007. Rates and causes of mortality in Endangered African wild dogs Lycaon pictus: lessons for management and monitoring. Oryx 41, 215–223.

    Article  Google Scholar 

  • Wright, S.J., Duber, H.C., 2001. Poachers and forest fragmentation alter seed dispersal, seed survival, and seedling recruitment in the palm Attalea butryaceae, with implications for tropical tree diversity. Biotropica 33, 421–434.

    Article  Google Scholar 

  • Zhou, Y., Zhang, J., Slade, E., Zhang, L, Palomares, F., Chien, J., Wang, X., Zhang, S., 2008. Dietary shifts in relation to fruit availability among masked palm civets (Paguma lavarta) in central China. J. Mammal. 89, 435–447.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wyatt Joseph Petersen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Petersen, W.J., Savini, T., Steinmetz, R. et al. Periodic resource scarcity and potential for interspecific competition influences distribution of small carnivores in a seasonally dry tropical forest fragment. Mamm Biol 95, 112–122 (2019). https://doi.org/10.1016/j.mambio.2018.11.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.11.001

Keywords

  • Fragmentation
  • Habitat use
  • Interspecific interactions
  • Resource availability
  • Small carnivores