Skip to main content
Log in

Minimising trapping effort without affecting population density estimations for small mammals

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Improving species community diversity studies needs population abundances to be calculated. Micro-mammal population densities are highly variable at small spatial scales. Mark-recapture methods based on grid trapping is the most reliable technique to study density in small rodents, albeit it is time-consuming because it necessitates increasing the number of spatial replicates. Here, we evaluated a live-trapping grid strategy to minimise field effort without decreasing the accuracy of small rodent population density estimations. We first computed spatially explicit estimates of population density using CMR histories from a large grid made by 100 traps set over 4 consecutive days and nights trapped twice per year between 2012 and 2015, and compared these estimates with those obtained from reduced session time and grid extent for two common rodent species: the wood mouse (Apodemus sylvaticus) and the bank vole (Myodes glareolus). We then compared density estimates to simpler catch-effort indexes of abundance for these rodents. Spatially explicit density estimates from capture-mark-recapture over 4 consecutive days from grids set with a single trap interspaced 5m on a 10x10 square were highly correlated (R2 = 0.945) with density estimates after 4 consecutive days on a 7 × 7 square arrangement. The best performance of catch-effort indexes relative to 4 days on 10 × 10 square grid spatial density estimates for these two rodents was found when using total trapping events recorded on 8 × 8 grids over 4 days or 9 × 9 over 3 days (R2 = 0.947 and 0.945 respectively). Our results support the use of a reduced grid design over 4 days to obtain reliable spatially explicit density estimates. We also obtained a reduced duration of trapping at the expense of keeping larger grids when using catch-effort indexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Angold, P.G., Sadler, J.P., Hill, M.O., Pullin, A., Rushton, S., Austin, K., Small, E., Wood, B., Wadsworth, R., Sanderson, R., Thompson, K., 2006. Biodiversity in urban habitat patches. Sci. Total Environ. 360, 196–204, https://doi.org/10.1016/j.scitotenv.2005.08.035.

    Article  CAS  PubMed  Google Scholar 

  • Benhamou, S., 1990. An analysis of movements of the wood mouse Apodemus sylvaticus in its home range. Behavioural Processes 22, 235–250, https://doi.org/10.1016/0376-6357(91)90097-J.

    Article  Google Scholar 

  • Borchers, D.L., Efford, M.G., 2008. Spatially explicit maximum likelihood methods for capture-recapture studies. Biometrics 64, 377–385, https://doi.org/10.1111/j.1541-0420.2007.00927.x.

    Article  CAS  PubMed  Google Scholar 

  • Bordes, F., Blasdell, K., Morand, S., 2015. Transmission ecology of rodent-borne diseases: new frontiers. Integr. Zool. 10, 424–435, https://doi.org/10.1111/1749-4877.12149.

    Article  PubMed  Google Scholar 

  • Bradley, C.A., Altizer, S., 2006. Urbanization and the ecology of wildlife diseases. Trends Ecol. Evol. 22, 95–102, https://doi.org/10.1016/j.tree.2006.11.001.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brown, L.E., 1954. Small mammal populations at silwood park field centre, Berkshire, England. Am. Soc. Mammal. 35, 161–176.

    Article  Google Scholar 

  • Brown, L.E., 1956. Movements of some British small mammals. J. Anim. Ecol. 25, 54–71.

    Article  Google Scholar 

  • Brown, L.E., 1969. Field experiments on the movements of Apodemus sylvaticus L. using trapping and tracking techniques. Oecologia 2, 198–222.

    CAS  PubMed  Google Scholar 

  • Chitty, D., 1937. A ringing technique for small mammals. J. Anim. Ecol. 6, 36–53.

    Article  Google Scholar 

  • Crawley, M.C., 1969. Movements and home-ranges of clethrionomys glareolus Schreber and Apodemus sylvaticus L. in North-East England. Oikos 20, 310–319.

    Google Scholar 

  • Dickman, C.R., 1999. Rodent-ecosystem relationships: a review. In: Singleton, G.R., Hinds, L.A., Leirs, H., Zhang, Z. (Eds.), Ecologically-Based Management of Rodent Pests. ACIAR Monograph, pp. 113–133.

    Google Scholar 

  • Dickman, C.R., Doncaster, C.P., 1987. The ecology of small mammals in urban habitats. I. Populations in a patchy environment. J. Anim. Ecol. 56, 629–640.

    Google Scholar 

  • Efford, M., 2004. Density estimation in live-trapping studies. Oikos 3, 598–610.

    Article  Google Scholar 

  • Efford, M.G., Borchers, D.L., Byrom, A.E., 2009. Density estimation by spatially explicit capture-recapture: likelihood-based methods. In: Modeling Demographic Processes in Marked Populations. Springer US, pp. 255–269.

    Chapter  Google Scholar 

  • Eskildsen, A., 2010. Effects of resource abundance on habitat selection and spatial behavior of the bank vole (Myodes glareolus). In: Doctoral dissertation, M.Sc. thesis. University of Copenhagen, Department of Biology, pp. 36.

    Google Scholar 

  • Fitzgerald, B.M., Efford, M.G., Karl, B.J., 2004. Breeding of house mice and the mast seeding of southern beeches in the Orongorongo Valley, New Zealand. New Zeal. J. Zool. 31, 167–184, https://doi.org/10.1080/03014223.2004.9518370.

    Article  Google Scholar 

  • Flowerdew, J.R., Shore, R.F., Poulton, S.M.C., Sparks, T.H., 2004. Live trapping to monitor small mammals in Britain. Mamm. Rev. 34, 31–50, https://doi.org/10.1046/j.0305-1838.2003.00025.x.

    Article  Google Scholar 

  • Gerber, B.D., Parmenter, R.R., 2015. Spatial capture-recapture model performance with known small-mammal densities. Ecological 25, 695–705, https://doi.org/10.1890/14-0960.1.

    Article  Google Scholar 

  • Gurnell, J., Gipps, J.H.W., 1989. Inter-trap movement and estimating rodent densities. J. Zool. Lond. 217, 241–254.

    Article  Google Scholar 

  • Ivan, J.S., White, G.C., Shenk, T.M., 2013. Using simulation to compare methods for estimating density from capture—recapture data using simulation to compare methods for estimating density from capture—recapture data. Ecology 94, 817–826, https://doi.org/10.2307/23436295.

    Article  Google Scholar 

  • Kikkawa, J., 1964. Movement, activity and distribution of the small rodents clethrionomys glareolus and Apodemus sylvaticus in Woodland. J. Anim. Ecol. 33, 259–299.

    Article  Google Scholar 

  • Krebs, C.J., Boonstra, R., Gilbert, S., Reid, D., Kenney, A.J., Hofer, E., 2011. Density estimation for small mammals from live trapping grids: rodents in northern Canada. J. Mammal. 92, 974–981, https://doi.org/10.1644/10-MAMM-A-313.1.

    Article  Google Scholar 

  • Le Quilliec, P., Croci, S., 2006. Piégeage de micromammifères Une nouvelle boîte-dortoir pour le piège non vulnérant Inra. Méthodes Outil. pour l’observation l’évaluation des milieux For. prairiaux Aquat. 125–128.

    Google Scholar 

  • Legendre, P., Legendre, L., 2008. Numerical Ecology. Elsevier, Amsterdam, The Netherlands, pp. 853.

    Google Scholar 

  • Manning, T., Edge, W.D., Wolff, J.O., 1995. Evaluating population-size estimators: an empirical approach. Am. Soc. Mammal. 76, 1149–1158.

    Article  Google Scholar 

  • McKinney, M.L., 2002. Urbanization, biodiversity and conservation. Bioscience 52, 883–890.

    Article  Google Scholar 

  • Morand, S., Krasnov, B.R., Poulin, R., Degen, A.A., 2006. Micromammals and macroparasites: Who is who and how they interact? In: Morand, S., Krasnov, B.R., Poulin, R. (Eds.), Micromammals and macroparasites. Springer-Verlag, Tokyo, pp. 3–9.

    Chapter  Google Scholar 

  • Morand, S., Chaisiri, K., Chaval, Y., Claude, J., Tran, A., Herbreteau, V., 2015. Assessing the distribution of disease-bearing rodents in human-modified tropical landscapes. J. Appl. Ecol. 52, 784–794, https://doi.org/10.1111/1365-2664.12414.

    Article  Google Scholar 

  • Nelson, L., Clark, F.W., 1973. American society of mammalogists correction for sprung traps in catch/effort calculations of trapping results. J. Mammal. 54, 295–298.

    Article  Google Scholar 

  • OJEU, 2010. Directive 2010/63 EU of the European Parliament and of the Council.

    Google Scholar 

  • Otis, D.L., Burnham, K.P., White, G.C., Anderson, D.R., 1978. Statistical inference from capture data on closed animal populations. 1978 62, 3–135, https://doi.org/www.jstor.org/stable/3830650.

    Google Scholar 

  • Parmenter, R.R., Yater, T.L., Anderson, D.R., Burham, K.P., Dunnum,J.L, Franklin, A.B., Friggens, M.T., Lubow, B.C., Miller, M., Olson, G.S., Parmenter, C.A., Pollard, J., Rexstad, E., Shenk, T.M., Stanley, T.R., White, G.C., 2003. Small-mammal density estimation: a field comparison of grid-based VS. web-based density estimators. Ecol. Monogr. 73, 1–26.

    Google Scholar 

  • Pavoine, S., Bonsall, M.B., 2011. Measuring biodiversity to explain community assembly: a unified approach. Biol. Rev. 86, 792–812, https://doi.org/10.1111/j.1469-185X.2010.00171.x.

    Article  CAS  PubMed  Google Scholar 

  • Pavoine, S., 2016. A guide through a family of phylogenetic dissimilarity measures among sites. Oikos 125, 1719–1732, https://doi.org/10.1111/oik.03262.

    Article  Google Scholar 

  • Pearson, D.E., Ruggiero, L.F., 2003. Transect grid trapping arrangements for sampling communities. Wildl. Res. 31, 454–459.

    Google Scholar 

  • Pelikán, J., 1971. Calculated densities of small mammals in relation to quadrat size. Annales 8, 3–6.

    Google Scholar 

  • Pelikán, J., Zejda, J., Holisova, V., 1964. On the question of investigating small mammal populations by the quadrate method. Acta Theriol. (Warsz) IX, 1–24.

    Google Scholar 

  • Preatoni, D.G., Zilio, A., Cantini, M., 1997. A model to opttmtze trap systems used for small mammal (Rodentia, Insectivora) density estimates. Hystrix 9, 31–37.

    Google Scholar 

  • Quéré, J.-P., Le Louarn, H., 2011. Les rongeurs de France: faunistique et biologie. Editions Quae, Versailles, France, 256 pp.

    Google Scholar 

  • R Development Core Team, The R Foundation for Statistical Computing, 2017, https://doi.org/www.r-project.org/foundation/.

  • Read, V.T., Malafant, K.W.J., Myers, K., 1998. A comparison of grid and index-line trapping methods for small mammal surveys. Wildl. Res. 15, 673–687, https://doi.org/10.1071/WR9880673.

    Article  Google Scholar 

  • Rézouki, C., Dozières, A., Le Cœur, C., Thibault, S., Pisanu, B., Chapuis, J.L., Baudry, E., 2014. A viable population of the European red squirrel in an urban park. PloS one 9, e105111, https://doi.org/10.1371/journal.pone.0105111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rizzoli, A., Silaghi, C., Obiegala, A., Rudolf, I., Földvári, G., 2014. Ixodes ricinus and its transmitted pathogens in urban and peri-urban areas in Europe: new hazards and relevance for public health. Front. Public Heal. 2, 1–26, https://doi.org/10.3389/fpubh.2014.00251.

    Google Scholar 

  • Romairone, J., Jiménez, J., Luque-Larena, J.J., Mougeot, F., 2018. Spatial capture-recapture design and modelling forthe study of small mammals. PLoS One 13, 1–22, https://doi.org/10.1371/journal.pone.0198766.

    Article  CAS  Google Scholar 

  • Ruscoe, W.A., Goldsmith, R., Choquenot, D., 2001. A comparison of population estimates and abundance indexes for house mice inhabiting beech forests in New Zealand. Wildl. Res. 28, 173–178.

    Article  Google Scholar 

  • Shochat, E., Warren, P., Faeth, S., McIntyre, N., Hope, D., 2006. From patterns to emerging processes in mechanistic urban ecology. Trends Ecol. Evol. 21, 186–191, https://doi.org/10.1016/j.tree.2005.11.019.

    Article  PubMed  Google Scholar 

  • Sollmann, R., Gardner, B., Chandler, R.B., Shindle, D.B., Onorato, D.P., Royle, J.A., O’ Connell, A.F., 2013. Using multiple data sources provides density estimates for endangered Florida panther. J. Appl. Ecol. 50, 961–968, https://doi.org/10.1111/1365-2664.12098.

    Article  Google Scholar 

  • Steele, B.B., Bayn, R.L., Val Grant, C., 1984. Environmental monitoring using populations of birds and small mammals: analyses of sampling effort. Biol. Conserv. 30, 157–172, https://doi.org/10.1016/0006-3207(84)90064-8.

    Article  Google Scholar 

  • Sun, C.C., Fuller, A.K., Royle, J.A., 2014. Trap configuration and spacing influences parameter estimates in spatial capture-recapture models. PLoS One 9, 1–9, https://doi.org/10.1371/journal.pone.0088025.

    Google Scholar 

  • Theuerkauf, J., Rouys, S., Jourdan, H., Gula, R., 2011. Efficiency of a new reverse-bait trigger snap trap for invasive rats and a new standardised abundance index. Ann. Zool. Fennici 48, 308–318.

    Article  Google Scholar 

  • Torre, I., Raspall, A., Arrizabalaga, A., Diaz, M., 2018. SEMICE: an unbiased and powerful monitoring protocol for small mammals in the Mediterranean region. Mamm. Res. 88, 161–167, https://doi.org/10.1016/j.mambio.2017.10.009.

    Google Scholar 

  • Williams, B.K., Nichols, J.D., Conroy, M.J., 2002. Management of Animal Populations: Modeling, Estimation, and Decision Making. Academic Press, San Diego, U.S.A., 818 pp.

    Google Scholar 

  • Wolton, R.J., 1985. The ranging and nesting behaviour of Wood mice, Apodemus sylvaticus (Rodentia: Muridae), as revealed by radio-tracking. J. Zool. 206, 203–222, https://doi.org/10.1111/j.1469-7998.1985.tb05645.x.

    Article  Google Scholar 

  • Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed Effects Models and Extensions in Ecology with R. Springer, New York, 574 pp.

    Book  Google Scholar 

  • Zuur, A.F., Ieno, E.N., Elphick, C.S., 2010. A protocol for data exploration to avoid common statistical problems. Methods Ecol. Evol. 1, 3–14.

    Article  Google Scholar 

  • Zuur, A.F., Hilbe, J.M., Ieno, E.N., 2013. Beginner’s Guide to GLM and GLMM with R. Newburgh. Highland Statistics Ltd, 256 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Castañeda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castañeda, I., Pisanu, B., Díaz, M. et al. Minimising trapping effort without affecting population density estimations for small mammals. Mamm Biol 93, 144–152 (2018). https://doi.org/10.1016/j.mambio.2018.10.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.10.004

Keywords

Navigation