Skip to main content

Advertisement

Log in

Effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Temporal segregation may be one of the most effective mechanism adopted by a subordinate species to reduce competition with a dominant species. We hypothesized temporal segregation by ocelots as the main strategy of reducing direct contact with pumas and humans in Atlantic Forest protected areas. Through a standardized camera trap protocol, we measured the degree of activity overlap between ocelots and pumas and between ocelots and humans using circular statistics. Additionally, we investigated predictor variables that may influence the temporal activity of ocelots. Ocelots and pumas showed nocturnal and cathemeral activity, respectively, whereas humans were diurnal. Although the coefficient of overlap between the activity of ocelots and pumas was high (ˆΔ1 =0.74), the Mardia-Watson-Wheeler test showed significant dissimilarities between their daily distributions of records (W = 5.86; d.f. = 2; P = 0.05). The coefficient of overlap between the activity of ocelots and humans was low (ˆΔ4 = 0.32) as also revealed by the Mardia-Watson-Wheeler test (W=179.51; d.f. = 2; P<0.001). Ocelots enhanced their nocturnal activity in sites where occupancy probability of pumas was high and either in sites with more pasture or near human settlements. Our finding suggests that temporal segregation may be one mechanism adopted by ocelots to allow its coexistence with pumas and humans in Atlantic Forest remnants. However, it is unknown whether temporal segregation per se will be enough to guarantee long-term persistence of ocelots in the current degraded scenario of the Atlantic Forest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agostinelli, C., Lund, U., 2013. Circular: Circular Statistics. R Package Version 0.4-7 (accessed 18 June 2017) https://doi.org/r-forge.r-project.org/projects/circular/.

    Google Scholar 

  • Barber-Meyer, S.M., Jnawali, S.R., Karki, J.B., Khanal, P., Lohani, S., Long, B., MacKenzie, D.I., Pandav, B., Pradhan, N.M.B., Shrestha, R., Subedi, N., Thapa, G., Thapa, K., Wikramanayake, E., Kitchener, A., 2012. Influence of prey depletion and human disturbance on tiger occupancy in Nepal. J. Zool. 289, 10–18.

    Article  Google Scholar 

  • Bianchi, R.D.C., Mendes, S.L., Júnior, P.D.M., 2010. Food habits ofthe ocelot, Leopardus pardalis, in two areas in southeast Brazil. Stud. Neotrop. Fauna Environ. 45, 111–119.

    Article  Google Scholar 

  • Buchmann, C.M., Schurr, F.M., Nathan, R., Jeltsch, F., 2013. Habitat loss and fragmentation affecting mammal and bird communities—the role of interspecific competition and individual space use. Ecol. Inf. 14, 90–98.

    Article  Google Scholar 

  • Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretical Approach, second ed. Springer-Verlag, New York, USA.

    Google Scholar 

  • Cabús, R., 2015. Tropsolar 5.0. Grupo de Pesquisa em Iluminação(GRILU). Maceió, Brasil (accessed 18 August 2017) https://doi.org/www.ctec.ufal.br/grupopesquisa/grilu/

    Google Scholar 

  • Carter, N., Jasny, M., Gurung, B., Liu, J., 2015. Impacts of people and tigers on leopard spatiotemporal activity patterns in a global biodiversity hotspot. Glob. Ecol. Conserv. 3, 149–162.

    Article  Google Scholar 

  • Carter, N.H., Shrestha, B.K., Karki, J.B., Pradhan, N.M.B., Liua, J., 2012. Coexistence between wildlife and humans at fine spatial scales. PNAS 109, 15360–15365.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cassano, C.R., Barlow, J., Pardini, R., 2014. Forest loss or management intensification? Identifying causes of mammal decline in cacao agroforests. Biol. Conserv. 169, 14–22.

    Article  Google Scholar 

  • Crawshaw, P.G., Quigley, H.B., 1989. Notes on ocelot movement and activity in the Pantanal region, Brazil. Biotropica 21, 377–379.

    Article  Google Scholar 

  • Curi, N.HdA, Massara, R.L., de Oliveira Paschoal, A.M., Soriano-Araújo, A., Lobato, Z.I.P., Demétrio, G.R., Chiarello, A.G., Passamani, M., 2016. Prevalence and risk factors for viral exposure in rural dogs around protected areas ofthe Atlantic forest. BMC Vet. Res. 12, 12–21.

    Article  Google Scholar 

  • Davis, M.L., Kelly, M.J., Stauffer, D.F., 2011. Carnivore co-existence and habitat use in the Mountain Pine Ridge Forest reserve. Belize. Anim. Conserv. 14, 56–65.

    Article  Google Scholar 

  • Di Bitetti, M.S., Angelo, C.D.D., Blanco, Y.E.D., Paviolo, A., 2010. Niche partitioning and species coexistence in a neotropical felid assemblage. Acta Oecol. 36, 403–412.

    Article  Google Scholar 

  • Donadio, E., Buskirk, S.W., 2006. Diet, morphology, and interspecific killing in carnivora. Am. Nat. 167, 524–536.

    Article  PubMed  Google Scholar 

  • Erdas, 1997. ERDAS Imagine v. 8.4 Field Guide, fourth ed. Erdas, Atlanta, USA.

    Google Scholar 

  • Foster, V.C., Sarmento, P., Sollmann, R., Tôrres, N., Jácomo, A.T.A., Negrões, N., Fonseca, C., Silveira, L., 2013. Jaguar and puma activity patterns and predator-prey interactions in four Brazilian biomes. Biotropica 45, 373–379.

    Article  Google Scholar 

  • Gause, G.F., 1932. Experimental studies on the struggle for existence. J. Exp. Biol. 9, 389–402.

    Google Scholar 

  • Gerber, B.D., Karpanty, S.M., Randrianantenaina, J., 2012. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. J. Mammal. 93, 667–676.

    Article  Google Scholar 

  • Glen, A.S., Dickman, C.R., 2005. Complex interactions among mammalian carnivores in Australia, and their implications for wildlife management. Biol. Rev. 80, 387–401.

    Article  PubMed  Google Scholar 

  • Gómez, H., Wallace, R.B., Ayala, G., Tejada, R., 2005. Dry season activity periods of some Amazonian mammals. Stud. Neotrop. Fauna Environ. 40, 91–95.

    Article  Google Scholar 

  • Goulart, F., Graipel, M.E., Tortato, M., Ghizoni-Jr, I., Oliveira-Santos, LG., Cáceres, N., 2009a. Ecology ofthe ocelot (Leopardus pardalis) in the Atlantic Forest of Southern Brazil. Netrop. Biol. Cons. 4, 137–143.

    Google Scholar 

  • Goulart, F.V.B., Cáceres, N.C., Graipel, M.E., Tortato, M.A., Ghizoni Jr, LonIvo Rohling, Gustavo, L., Oliveira-Santos, R., 2009b. Habitat selection by large mammals in a southern Brazilian Atlantic Forest. Mamm. Biol. 74, 182–190.

    Article  Google Scholar 

  • Haines, A.M., Grassman Jr, Lon I., Tewes, M.E., Janecka, J.E., 2006. First ocelot (Leopardus pardalis) monitored with GPS telemetry. Eur. J. Wildl. Res. 52, 216–218.

    Article  Google Scholar 

  • Hines, J.E., 2006. PRESENCE2- Software to Estimate Patch Occupancy and Related Parameters. USGS-PWRC (accessed 15 August 2017) https://doi.org/www.mbr-pwrc.usgs.gov/software/presence.html.

    Google Scholar 

  • Instituto Brasileiro de Geografia e Estatística, 2012. Mapas interativos do IBGE: Clima. Atualizadoem 07/01/2012 (accessed 20 September 2017) https://doi.org/mapas.ibge.gov.br/interativos/.

    Google Scholar 

  • Jorge, M.L.S.P., Galetti, M., Ribeiro, M.C., Ferraz, K.M.P.M.B., 2013. Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot. Biol. Conserv. 163, 49–57.

    Article  Google Scholar 

  • Karanth, K.U., Gopalaswamy, A.M., Kumar, N.S., Vaidyanathan, S., Nichols, J.D., MacKenzie, D.I., 2011. Monitoring carnivore populations at the landscape scale: occupancy modelling of tigers from sign surveys. J. Appl. Ecol. 48, 1048–1056.

    Article  Google Scholar 

  • Kronfeld-Schor, N., Dayan, T., 2003. Partitioning of time as an ecological resource. Ecol. Evol. Syst. 34, 153–181.

    Article  Google Scholar 

  • Lewis, J.S., Bailey, L.L., VandeWoude, S., Crooks, K.R., 2015. Interspecific interactions between wild felids vary across scales and levels of urbanization. Ecol. Evol., 1–16.

    Google Scholar 

  • Linkie, M., Ridout, M.S., 2011. Assessing tiger-prey interactions inSumatran rainforests. J. Zool. 284, 224–229.

    Article  Google Scholar 

  • Lyra-Jorge, M.C., Ciocheti, G., Pivello, V.R., 2008. Carnivore mammals in a fragmented landscape in northeast of São Paulo State, Brazil. Biodivers. Conserv. 17, 1573–1580.

    Article  Google Scholar 

  • MacKenzie, D.I., Nichols, J.D., Royle, J.A., Pollock, K.H., Bailey, L.L., Hines, J.E., 2006. Occupancy Estimation and Modeling: Inferring Patterns and Dynamics of Species Occurrence, first ed. Elsevier/Academic Press, Burlington, USA.

    Google Scholar 

  • Martín, A.D.H.S., Rosas-Rosas, O.C., Palacios-Nún˜ez, J., Tarango-Árambula, L.A., Clemente-Sánchez, F., Hoogesteijn, A.L., 2013. Activity patterns of jaguar, puma and their potential prey in San Luis Potosí, Mexico. Acta Zool. Mex. 29, 520–533.

    Google Scholar 

  • Massara, R.L., Paschoal, A.Md.O., Bailey, L.L., Doherty Jr, P.F., Hirsch, A., Chiarello, A.G., 2018. Factors influencing ocelot occupancy in Brazilian Atlantic Forest reserves. Biotropica 50, 125–134.

    Article  Google Scholar 

  • Massara, R.L., Paschoal, A.M.O., Bailey, L.L., Doherty Jr, P.F., Chiarello, A.G., 2016. Ecological interactions between ocelots and sympatric mesocarnivores in protected areas of the Atlantic Forest, southeastern Brazil. J. Mammal. 97, 1634–1644.

    Article  Google Scholar 

  • Massara, R.L., Paschoal, A.M.O., Doherty Jr, P.F., Hirsch, A., Chiarello, A.G., 2015. Ocelot population status in protected Brazilian Atlantic Forest. PloS One 10, e0141333.

  • Mazerolle, M.J., 2017. AICcmodavg: Model Selection and Multimodel Inference Based on(Q)AIC(c). R Package Version 2.1-1 (accessed 24 October 2017) https://doi.org/cran.r-project.org/package=AICcmodavg.

    Google Scholar 

  • Meredith, M., Ridout, M., 2014. Overlap: Estimates of Coefficient of Overlapping for Animal Activity Patterns. R Package Version 0.2.4 (accessed 24 October 2017) https://doi.org/CRAN.Rproject.org/package=overlap/.

    Google Scholar 

  • Miranda, E.E., 2005. Brasil em Relevo. Embrapa Monitoramento porsatélite (accessed 2 September 2017) https://doi.org/www.relevobr.cnpm.embrapa.br/.

    Google Scholar 

  • Monroy-Vilchis, O., Gómez, Y., Janczur, M., Urios, V., 2009. Food niche of puma concolor in Central Mexico. Wildl. Biol. 15, 97–105.

    Article  Google Scholar 

  • Moreno, R.S., Kays, R.W., Samudio, R.J., 2006. Competitive release in diets of ocelot (Leopardus pardalis) and Puma (Puma concolor) after Jaguar (Panthera onca) decline. J. Mammal. 87, 808–816.

    Article  Google Scholar 

  • Oliveira-Santos, L.G.R., Graipel, M.E., Tortato, M.A., Zucco, CA., Cáceres, N.C., Goulart, F.V.B., 2012. Abundance changes and activity flexibility of the oncilla, Leopardus tigrinus (Carnivora: Felidae), appear to reflect avoidance of conflict. Zoologia 29, 115–120.

    Google Scholar 

  • Oliveira, T.G., 2002. Ecología comparativa de la alimentación del jaguar y del puma en el neotrópico. In: Medellín, R.A., Equihua, C., Chetkiewicz, C.L.B., Peter, G., Crawshaw,J., Rabinowitz, A., Redford, K.H., Robinson, J.G., Sanderson, E.W., Taber, A.B. (Eds.), el jaguaren el nuevo milenio. Wildlife Conservation Society, Mexico City, Mexico, pp. 265–288.

    Google Scholar 

  • Oliveira, T.G., Pereira, J.A., 2014. Intraguild predation and interspecific killing as structuring forces of carnivoran communities in South America. J. Mamm. Evol. 21, 427–436.

    Article  Google Scholar 

  • Oriol-Cotterill, A., Macdonald, D.W., Valeix, M., Ekwanga, S., Frank, L.G., 2015. Spatiotemporal patterns of lion space use in a human-dominated landscape. Anim. Behav. 101, 27–39.

    Article  Google Scholar 

  • Palomares, F., Caro, T.M., 1999. Interspecific killing among mammalian carnivores. Am. Nat. 153, 492–508.

    Article  CAS  PubMed  Google Scholar 

  • Paschoal, A.M.O., Massara, R.L., Bailey, L.L., Kendall, W.L., Paul, F., Doherty, J., Hirsch, A., Chiarello, A.G., Paglia, A.P., 2016. Use of Atlantic Forest protected areas by free- ranging dogs: estimating abundance and persistence of use. Ecosphere 7, 1–15.

    Article  Google Scholar 

  • Paschoal, A.M.O., Massara, R.L., Santos, J.L., Chiarello, A.G., 2012. Is the domestic dog becoming an abundant species in the Atlantic forest? A study case in southeastern Brazil. Mammalia 76, 67–76.

    Article  Google Scholar 

  • Polis, G.A., Myers, C.A., Holt, R.D., 1989. The ecology and evolution of intraguild predation: potential competitors that eat each other. Annu. Rev. Ecol. Syst. 20, 297–330.

    Article  Google Scholar 

  • Polisar, J., Maxit, I., Scognamillo, D., Farrell, L., Sunquist, M.E., Eisenberg, J.F., 2003. Jaguars, pumas, their prey base, and cattle ranching: ecological interpretations of a management problem. Biol. Conserv. 109, 297–310.

    Article  Google Scholar 

  • R Development Core Team, 2012. R: a Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria (accessed 7 October 2017) https://doi.org/www.R-project.org/.

    Google Scholar 

  • Ribeiro, M.C., Metzger, J.P., Martensen, A.C., Ponzoni, F.J., Hirota, M.M., 2009. The Brazilian Atlantic Forest:how much is left, and how is the remaining forest distributed? Implications for conservation. Biol. Conserv. 142, 1141–1153.

    Article  Google Scholar 

  • Ridout, M.S., Linkie, M., 2009. Estimating overlap of daily activity patterns from camera trap data. J. Agric. Biol. Environ. Stat. 14, 322–327.

    Article  Google Scholar 

  • Romero-Muñoz, A., Maffei, L., Cuéllar, E., Noss, A.J., 2010. Temporal separation between jaguar and puma in the dry forests of Southern Bolivia. J. Trop. Ecol. 26, 303–311.

    Article  Google Scholar 

  • Santos, J.L., Paschoal, A.M.O., Massara, R.L., Chiarello, A.G., 2014. High consumption of primates by pumas and ocelots in a remnant of the Brazilian Atlantic Forest. Braz. J. Biol. 74, 632–641.

    Article  CAS  PubMed  Google Scholar 

  • Smith, J.A., Wang, Y., Wilmers, C.C., 2015. Top carnivores increase their kill rates on prey as a response to human-induced fear. Proc. R. Soc. Lond. B Biol. Sci. 282, 20142711.

  • SOS Mata Atlântica, 2015. Relatóriotécnico do Atlas dos remanescentes florestais da Mata Atlântica (período 2013-2014) (accessed 4 August 2017) https://doi.org/mapas.sosma.org.br/dados/.

    Google Scholar 

  • Srbek-Araujo, A.C., Chiarello, A.G., 2013. Influence of camera-trap sampling design on mammal species capture rates and community structures in southeastern Brazil. Biota Neotrop. 13, 51–62.

    Article  Google Scholar 

  • Srivathsa, A., Karanth, K.K., Jathanna, D., Kumar, N.S., Karanth, K.U., 2014. On a dhole trail: examining ecological and anthropogenic correlates of dhole habitat occupancy in the Western ghats of India. PloS One 9, e98803.

  • Sunarto, S., Kelly, M.J., Parakkasi, K., Hutajulu, M.B., 2015. Cat coexistence in central Sumatra: ecological characteristics, spatial and temporal overlap, and implications for management. J. Zool. 296, 104–115.

    Article  Google Scholar 

  • Sunquist, M.E., Sunquist, F., 2002. Wild Cats of the World, first ed. University of Chicago Press, Chicago, USA.

    Book  Google Scholar 

  • Tabarelli, M., Aguiar, A.V., Ribeiro, M.C., Metzger, J.P., Peres, C.A., 2010. Prospects for biodiversity conservation in the Atlantic Forest: lessons from aging human-modified landscapes. Biol. Conserv. 143, 2328–2340.

    Article  Google Scholar 

  • Wang, Y., Allen, M.L., Wilmers, C.C., 2015. Mesopredator spatial and temporal responses to large predators and human development in the Santa Cruz mountains of California. Biol. Conserv. 190, 23–33.

    Article  Google Scholar 

  • Wilson, D.E., Mittermeier, R.A., 2009. Handbook of the Mammals of the World-Carnivores. Lynx Edicions, Barcelona, Spain.

    Google Scholar 

  • Wolf, C., Ripple, W.J., 2016. Prey depletion as a threat to the world’s large carnivores. Royal. Soc. Open Sci. 3, 160252.

    Article  Google Scholar 

  • Worton, B.J., 1989. Kernel methods for estimating the utilization distribution in home-range. Ecology 70, 164–168.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Lima Massara.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Massara, R.L., de Oliveira Paschoal, A.M., Bailey, L.L. et al. Effect of humans and pumas on the temporal activity of ocelots in protected areas of Atlantic Forest. Mamm Biol 92, 86–93 (2018). https://doi.org/10.1016/j.mambio.2018.04.009

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.04.009

Keywords

Navigation