Skip to main content
Log in

Spiny mice of the Zambezian bioregion - phylogeny, biogeography and ecological differentiation within the Acomys spinosissimus complex

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Despite the high degree of biological diversity in the Zambezian region, little information is available regarding the evolutionary history of its biota, and this is especially true for the fauna and flora of non-forested habitats. Here we use the most comprehensive multi-locus genetic dataset available to (1) reconstruct the phylogeny of spiny mice of the Acomys spinosissimus complex and to describe the spa-tial distribution of its genetic diversity; (2) to assess the level of reproductive isolation between genetic clades; (3) to analyse differences in climatic niche between potential species; and (4) to model their current and past distribution. The complex comprises four main genetic clades that correspond to four nominal species living in the east of the Zambezian region. Their distribution is delimited by important geographical divides including the Eastern Arc Mountains, Lake Malawi and the Zambezi River. Two species considered Tanzanian endemics, A. ngurui and A. muzei, are now known to be more widespread than previously thought and they have their centres of genetic diversity just north of the Zambezi. The first split between the extant members of the A. spinosissimus complex is estimated at 3 Mya. Most intraspecific diversification events are thought to have occurred in the Pleistocene, suggesting that climatic oscillations played an important role in their diversification. The climatic niches of parapatric taxa differ significantly; hence, local adaptations have likely played an important role in reproductive isolation. Species distribution modelling predicts a dramatic reduction of occurrence probability across the area during the last interglacial period, facilitating allopatric diversification of fragmented populations. Our results strongly suggest the combined role of Pleistocene climatic change, biogeographical barriers and local adaptation in forming current taxa diversity in east African savannah-like habitats. While such processes have frequently been observed in forest-living organisms (theory of allopatric diversification in forest refugia), similar mechanisms were likely also working in open ecosystems (savannah refugia).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bandelt, H.J., Forster, P., Rohl, A., 1999. Median-joining networks for inferring intraspecific phylogenies. Mol. Biol. Evol. 16, 37–48.

    Article  CAS  PubMed  Google Scholar 

  • Barome, P.O., Volobouev, V., Monnerot, M., Mfune, J.K., Chitaukali, W., Gautun, J.C., Denys, C, 2001. Phylogeny ofAcomys spinosissimus (Rodentia, Muridae) from north Malawi and Tanzania: evidence from morphological and molecular analysis. Biol. J. Linn. Soc. 73, 321–340.

    Article  Google Scholar 

  • Bartáková, V., Reichard, M., Blažek, R., Polačik, M., Bryja, J., 2015. Terrestrial fishes: Rivers are barriers to gene flow in annual fishes from the African savanna. J. Biogeogr. 42, 1832–1844.

    Article  Google Scholar 

  • Braconnot, P., Harrison, S., Joussaume, S., 2006. Coupled simulations of the mid-Holocene and Last Glacial Maximum: new results from PMIP2. Clim. Past 3, 1293–1346.

    Google Scholar 

  • Bryja, J., Mazoch, V., Patzenhauerová, H., Mateke, C, Zima Jr, J., Šklíba, J., Šumbera, R., 2012. Revised occurrence of rodents from the tribe Praomyini (Muridae) in Zambia based on mitochondrial DNA analyses: implications forbiogeography and conservation. Fol. Zool. 61, 268–283.

    Article  Google Scholar 

  • Bryja, J., Mikula, O., Šumbera, R., Meheretu, Y., Aghová, T., Lavrenchenko, L.A., Mazoch, V., Oguge, N., Mbau, J.S., Welegerima, K., Amundala, N., Colyn, M., Leirs, H., Verheyen, E., 2014. Pan-African phylogeny of Mus (subgenus Nannomys) reveals one of the most successful mammal radiations in Africa. BMC Evol. Biol. 14, 256.

    Article  PubMed  PubMed Central  Google Scholar 

  • Cohen, A.S., Stone, J.R., Beuning, K.R.M., Park, L.E., Reinthal, P.N., Dettman, D., Scholz, C.A., Johnson, T.C., King, J.W., Talbot, M.R., Brown, E.T., Ivory, S.J., 2007. Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proc. Natl. Acad. Sci. 104, 16422–16427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colangelo, P., Granjon, L., Taylor, P.J., Corti, M., 2007. Evolutionary systematics in African gerbilline rodents of the genus Gerbilliscus: Inference from mitochondrial genes. Mol. Phyl. Evol. 42, 797–806.

    Article  CAS  Google Scholar 

  • Colangelo, P., Verheyen, E., Leirs, H., Tatard, C., Denys, C., Dobigny, G., Duplantier, J.M., Brouat, C., Granjon, L., Lecompte, E., 2013. A mitochondrial phylogeographic scenario for the most widespread African rodent, Mastomys natalensis. Biol. J. Linn. Soc. 108, 901–916.

    Article  Google Scholar 

  • Cotterill, F.P.D., 2003. Geomorphological influences on vicariant evolution in some African mammals in the Zambezi basin: some lessons for conservation. In: Plowman, A. (Ed.), Ecology and Conservation of Small Antelopes., Fourth ed. Filander Verlag, Fürth, pp. 11-58, Proceedings of an International Symposium on Duiker and Dwarf Antelope in Africa.

    Google Scholar 

  • Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9, 772–772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Menocal, P.B., 2004. African climate change and faunal evolution during the Pliocene-Pleistocene. Earth Planet. Sci. Lett. 220, 3–24.

    Article  CAS  Google Scholar 

  • Denys, C., Winkler, A.J., 2015. Advances in integrative taxonomy and evolution of African murid rodents: how morphological trees hide the molecular forest. In: Cox, P.G., Hautier, L. (Eds.), Evolution of the Rodents: Advances in Phylogeny, Functional Morphology and Development. Cambridge University Press, Cambridge, pp. 186–220.

    Chapter  Google Scholar 

  • Drummond, A.J., Rambaut, A., Shapiro, B., Pybus, O.G., 2005. Bayesian coalescent inference of past population dynamics from molecular sequences. Mol. Biol. Evol. 22, 1185–1192.

    Article  CAS  PubMed  Google Scholar 

  • Drummond, A.J., Suchard, M.A., Xie, D., Rambaut, A., 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 29, 1969–1973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faulkes, C.G., Bennett, N.C., Cotterill, F.P.D., Stanley, W., Mgode, G.F., Verheyen, E., 2011. Phylogeography and cryptic diversity ofthe solitary-dwelling silvery mole-rat, genus Heliophobius (family: Bathyergidae). J. Zool. 285, 324–338.

    Article  Google Scholar 

  • Flynn, L.J., Jacobs, L.L., 1999. Late Miocene small mammal faunal dynamics: the crossroads of the Arabian Peninsula. In: Whybrow, P.J., Hill, A. (Eds.), Fossil vertebrates of Arabia. Yale University Press, New Haven, pp. 412–419.

    Google Scholar 

  • Geraads, D., 2001. Rongeurs du Miocene superieur de Chorora (Ethiopie): Dendromuridae, Muridae et conclusions. Palaeovertebrata 30, 89–109.

    Google Scholar 

  • Happold, D.C.D., 2013. Acomys spinosissimus. In: Kingdon, J., Happold, D., Butynski, T., Hoffmann, M., Happold, M., Kalina, J. (Eds.), Mammals of Africa, vol. 3. A&C Black, London, pp. 665–667, Rodentia.

    Google Scholar 

  • Haug, G.H., Tiedemann, R., 1998. Effect of the formation ofthe Isthmus of Panama on Atlantic Ocean thermohaline circulation. Nature 393, 673–676.

    Article  CAS  Google Scholar 

  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005. Very high resolution interpolated climate surfaces forglobal land areas. Int. J. Climatol 25, 1965–1978.

    Article  Google Scholar 

  • Hijmans, R.J., Phillips, S., Leathwick, J., Elith, J., 2017. Dismo: Species Distribution Modelling R package version 1.1-4.

    Google Scholar 

  • Chatterjee, S., Hadi, A.S., 2006. Regression Analysis by Example, Probability and Statistics. John Wiley & Sons, Hoboken, NJ.

    Book  Google Scholar 

  • Larsson, A., 2014. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 30, 3276–3278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Librado, P., Rozas, J., 2009. DnaSP v5: A software forcomprehensive analysis of DNA polymorphism data. Bioinformatics 25, 1451–1452.

    CAS  Google Scholar 

  • Linder, H.P., de Klerk, H.M., Born, J., Burgess, N.D., Fjeldså, J., Rahbek, C., 2012. The partitioning of Africa: Statistically defined biogeographical regions in sub-Saharan Africa. J. Biogeogr. 39, 1189–1205.

    Article  Google Scholar 

  • Loader, S.P., Sara Ceccarelli, F., Menegon, M., Howell, K.M., Kassahun, R., Mengistu, A.A., Saber, S.A., Gebresenbet, F., de Sá, R., Davenport, T.R.B., Larson, J.G., Müller, H., Wilkinson, M., Gower, D.J., 2014. Persistence and stability of Eastern Afromontane forests: Evidence from brevicipitid frogs. J. Biogeogr 41, 1781–1792.

    Article  Google Scholar 

  • Mazoch, V., Mikula, O., Bryja, J., Konvičková, H., Russo, I.R., Verheyen, E., Sumbera, R., available online 2018. Phylogeography of a widespread sub-Saharan murid rodent Aethomys chrysophilus: the role ofgeographic barriers and paleoclimate in Zambezian region. Mammalia., http://dx.doi.org/10.1515/mammalia-2017-0001.

    Google Scholar 

  • McDonough, M.M., Šumbera, R., Mazoch, V., Ferguson, A.W., Phillips, C.D., Bryja, J., 2015. Multilocus phylogeography of a widespread savanna-woodland-adapted rodent reveals the influence of Pleistocene geomorphology and climate change in Africa’s Zambezi region. Mol. Ecol. 24, 5248–5266.

    Article  PubMed  Google Scholar 

  • Merow, C, Smith, M.J., Silander, J.A., 2013. A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36, 1058–1069.

    Google Scholar 

  • Mikula, O., Sumbera, R., Aghová, T., Mbau, J.S., Katakweba, A.S., Sabuni, C.A., Bryja, J., 2016. Evolutionary history and species diversity of African pouched mice (Rodentia: Nesomyidae: Saccostomus). Zool. Scr. 45, 595–617.

    Google Scholar 

  • Monadjem, A., Taylor, P.J., Denys, C., Cotterill, F.P.D., 2015. Rodents of Sub-Saharan Africa. A biogeographic and taxonomic synthesis. Walter de Gruyter GmbH, Berlin/Munich/Boston.

    Book  Google Scholar 

  • Muscarella, R., Galante, P.J., Soley-Guardia, M., Boria, R.A., Kass, J., Uriarte, M., Anderson, R.P., 2014. ENMeval: An R package forconducting spatially independent evaluations and estimating optimal model complexity for ecological niche models. Methods Ecol. Evol. 5, 1198–1205.

    Article  Google Scholar 

  • Otto-Bliesner, B.L., 2006. Simulating Arctic climate warmth and icefield retreat in the last interglaciation. Science 311, 1751–1753.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, S.J., Dudík, M., Schapire, R.E., 2004. A maximum entropy approach to species distribution modeling. In: Brodley, C. (Ed.), Twenty-First International Conference on Machine Learning - ICML’04. Banff, Alberta, Canada, pp. 655–662.

    Google Scholar 

  • Plana, V., 2004. Mechanisms and tempo of evolution in the African Guineo-Congolian rainforest. Philos. Trans. R. Soc. Lond. B 359, 1585–1594.

    Article  Google Scholar 

  • Potts, R., 2013. Hominin evolution in settings of strong environmental variability. Quat. Sci. Rev. 73, 1–13.

    Article  Google Scholar 

  • Quantum GIS Development Team, http://qgis.osgeo.org/ (Accessed 12 August 2017) 2009. Quantum GIS Geographic Information System. Open Source Geospatial Foundation Project.

    Google Scholar 

  • RCoreTeam, URL 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria (Accessed 17 June 2017) https://www.R-project.org/.

    Google Scholar 

  • Rambaut, A., Drummond, A.J., 2013. Tracer 1.6. University of Edinburgh, Edinburgh, UK, URL http://tree.bio.ed.ac.uk/software/tracer/ (Accessed 17 June 2017).

    Google Scholar 

  • Ravelo, A.C., Andreasen, D.H., Lyle, M., Lyle, A.O., Waea, M.W., 2004. Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature 429, 263–267.

    Article  CAS  PubMed  Google Scholar 

  • Ronquist, F., Teslenko, M., Van Der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol 61, 539–542.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shorrocks, B., 2007. The biology of African savannahs. Oxford University Press, New York.

    Book  Google Scholar 

  • Schenk, J.J., Rowe, K.C., Steppan, S.J., 2013. Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst. Biol. 62, 837–864.

    Article  PubMed  Google Scholar 

  • Stamatakis, A., 2006. Phylogenetic models of rate heterogeneity: A high performance computing perspective. In: Spirakis, P., Siegel, H.J. (Eds.), 20th International Parallel and Distributed Processing Symposium, IPPS proc. Rhodes Island, Greece, pp. 253–260.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toews, D.P.L., Brelsford, A., 2012. The biogeography of mitochondrial and nuclear discordance in animals. Mol. Ecol. 21, 3907–3930.

    Article  CAS  PubMed  Google Scholar 

  • Verheyen, W., Hulselmans, J., Wendelen, W., Leirs, H., Corti, M., Backeljau, T., Verheyen, E., 2011. Contribution to the systematics and zoogeography of the East-African Acomys spinosissimusPeters 1852 species complex and the descriptionoftwo new species (Rodentia: Muridae). Zootaxa 3059, 1–35.

    Article  Google Scholar 

  • Vincens, A., Buchet, G., Williamson, D., Taieb, M., 2005. A 23,000 yr pollen record from Lake Rukwa(8°S, SW Tanzania): New data on vegetationdynamics and climate in Central Eastern Africa. Rev. Palaeobot. Palynol. 137, 147–162.

    Article  Google Scholar 

  • Warren, D.L., Seifert, S.N., 2011. Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecol. Appl. 21, 335–342.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josef Bryja.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petružela, J., Šumbera, R., Aghová, T. et al. Spiny mice of the Zambezian bioregion - phylogeny, biogeography and ecological differentiation within the Acomys spinosissimus complex. Mamm Biol 91, 79–90 (2018). https://doi.org/10.1016/j.mambio.2018.03.012

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.03.012

Keywords

Navigation