Skip to main content
Log in

Detection dogs allow for systematic non-invasive collection of DNA samples from Eurasian lynx

  • Short communication
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

As Eurasian lynx (Lynx lynx) show signs of population recovery in parts of Central Europe, sound monitoring strategies are required to study population expansion, connectivity and genetic diversity. While non-invasive DNA sampling strategies could serve this task, genetic samples of lynx are generally hard to locate. To test the suitability of dog-based sampling we searched scat samples of lynx in the Bavarian Forest National Park, Germany, with two trained detection dog teams. In 44 grid cells of 2 × 2 km, dog teams covered 440 km of predetermined forest road and hiking trail transects during the four week survey. A total of 169 collected samples resulted in 52 genetically confirmed lynx detections, of which 26 were assigned to 11 individuals. Using a single-season site occupancy model we found a detection probability of 0.13/km (SD = 0.02), with 10 km of dog search per grid cell required to get a 70 % probability to detect lynx presence. Our results show that detection dogs are an appropriate tool for systematic genetic lynx monitoring. We argue that detection dog-assisted genetic monitoring may supplement monitoring strategies based on conventional camera trapping, especially when aiming to monitor genetic diversity and population connectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Alda, F., Inogés, J., Alcaraz, L., Oria, J., Aranda, A., Doadrio, I., 2008. Looking for theIberian lynx in central Spain: a needle in a haystack? Anim. Conserv. 11 (4), 297–305.

    Article  Google Scholar 

  • Barba, M., de Waits, L.P., Garton, E.O., Genovesi, P., Randi, E., Mustoni, A., Groff, C.,2010. The power of genetic monitoring for studying demography, ecology andgenetics of a reintroduced brown bear population. Mol. Ecol. 19 (18), 3938–3951.

    Article  Google Scholar 

  • Boitani, L., Alvarez F., Anders, O., Andren, H., Avanzinelli, E., Balys, V., Blanco, J.C., Breitenmoser, U., Chapron, G., Ciucci, P., Dutsov, A., Groff, C., Huber, D., Ionescu, O., Knauer, F., Kojola, I., Kubala, J., Kutal, M., Linnell, J., Majic, A., Mannil, P., Manz, R., Marucco, F., Melovski, D., Molinari, A., Norberg, H., Nowak, S., Ozolins, J., Palazon, S., Potocnik, H., Quenette, P.-Y., Reinhardt, I., Rigg, R., Selva, N., Sergiel, A., Shkvyria, M., Swenson, J., Trajce, A., Arx, M., von, Wölfl, M., Wotschikowsky, U., Zlatanova, D., 2015. Key actions for large carnivorepopulations in Europe. Report to DG Environment, European Commission, Bruxelles. Institute of Applied Ecology, 120pp. (http://ec.europa.eu/environment/nature/conservation/species/carnivores/pdf/key actions largecarnivores_2015.pdf. Accesse. 8 November 2017).

    Google Scholar 

  • Bull, J.K., Heurich, M., Saveljev, A.P., Schmidt, K., Fickel, J., Förster, D.W., 2016. Theeffect of reintroductions on the genetic variability in Eurasian lynxpopulations: the cases of Bohemian-Bavarian and Vosges-Palatinianpopulations. Conserv. Genet. 17 (5), 1229–1234.

    Article  Google Scholar 

  • Cailleret, M., Heurich, M., Bugmann, H., 2014. Reduction in browsing intensity maynot compensate climate change effects on tree species composition in theBavarian Forest National Park. For. Ecol. Manage. 328, 179–192.

    Article  Google Scholar 

  • Chapron, G., Kaczensky, P., Linnell, J.D.C., Arx, M., von Huber, D., Andrén, H., López-Bao, J.V., Adamec, M., Álvares, F., Anders, O., Balčiauskas, L., Balys, V., Bedő, P., Bego, F., Blanco, J.C., Breitenmoser, U., Brøseth, H., Bufka, L., Bunikyte, R., Ciucci, P., Dutsov, A., Engleder, T., Fuxjäger, C., Groff, C., Holmala, K., Hoxha, B., Iliopoulos, Y., Ionescu, O., Jeremić, J., Jerina, K., Kluth, G., Knauer, F., Kojola, I., Kos, I., Krofel, M., Kubala, J., Kunovac, S., Kusak, J., Kutal, M., Liberg, O., Majić, A., Männil, P., Manz, R., Marboutin, E., Marucco, F., Melovski, D., Mersini, K., Mertzanis, Y., Mysłajek, R.W., Nowak, S., Odden, J., Ozolins, J., Palomero, G., Paunović, M., Persson, J., Potočnik, H., Quenette, P.-Y., Rauer, G., Reinhardt, I., Rigg, R., Ryser, A., Salvatori, V., Skrbinˇsek, T., Stojanov, A., Swenson, J.E., Szemethy, L., Trajçe, A., Tsingarska-Sedefcheva, E., Váňa, M., Veeroja, R., Wabakken, P., Wölfl, M., Wölfl, S., Zimmermann, F., Zlatanova, D., Boitani, L., 2014. Recovery of large carnivores in Europe’s modern human-dominated landscapes. Science 346 (6216), 1517–1519.

    Article  CAS  Google Scholar 

  • Clare, J.D.J., Anderson, E.M., MacFarland, D.M., Sloss, B.L., 2015. Comparing the costs and detectability of bobcat using scat-detecting dog and remote camerasurveys in Central Wisconsin. Wildl. Soc. Bull. 39 (1), 210–217.

    Article  Google Scholar 

  • Dahlgren, D.K., Elmore, D.R., Smith, D.A., Hurt, A., Arnett, E.B., Connelly, J.W., 2012. Use of dogs in wildlife research and management. In: Silvy, N.J. (Ed.), The Wildlife Techniques Manual, vol. 1, 7th ed. Johns Hopkins University Press, Baltimore, pp. 140–153.

    Google Scholar 

  • Davoli, F., Schmidt, K., Kowalczyk, R., Randi, E., 2013. Hair snaring and moleculargenetic identification for reconstructing the spatial structure of Eurasian lynx populations. Mamm. Biol. 78 (2), 118–126.

    Article  Google Scholar 

  • Duggan, J.M., Heske, E.J., Schooley, R.L., Hurt, A., Whitelaw, A., 2011. Comparing detection dog and livetrapping surveys for a cryptic rodent. J. Wildl. Manage. 75 (5), 1209–1217.

    Article  Google Scholar 

  • Goodwin, K.M., Engel, R.E., Weaver, D.K., 2010. Trained dogs out perform human surveyors in the detection of rare spotted knapweed (Centaurea stoebe). Invas. Plant Sci. Manag. 3 (2), 113–121.

    Article  Google Scholar 

  • Gugolz, D., Bernasconi, M.V., Breitenmoser-Würsten, C., Wandeler, P., 2008. Historical DNA reveals the phylogenetic position of the extinct Alpine lynx. J. Zool. 275 (2), 201–208.

    Article  Google Scholar 

  • Kéry, M., Schaub, M., Beissinger, S.R., 2012. Bayesian Population Analysis Using WinBUGS: A Hierarchical Perspective, 1st ed. Academic Press, Boston (537 pp.).

    Google Scholar 

  • Lucchini, V., Fabbri, E., Marucco, F., Ricci, S., Boitani, L., Randi, E., 2002. Noninvasivemolecular tracking of colonizing wolf (Canis lupus) packs in the western Italian Alps. Mol. Ecol. 11 (5), 857–868.

    Article  CAS  Google Scholar 

  • Mumma, M.A., Zieminski, C., Fuller, T.K., Mahoney, S.P., Waits, L.P., 2015. Evaluating noninvasive genetic sampling techniques to estimate largecarnivore abundance. Mol. Ecol. Resour. 15 (5), 1133–1144.

    Article  Google Scholar 

  • Nowak, C., Büntjen, M., Steyer, K., Frosch, C., 2014. Testing mitochondrial markersfor noninvasive genetic species identification in European mammals. Conserv.Genet. Resour. 6 (1), 41–44.

    Article  Google Scholar 

  • R. Core Team, 2016. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria https://www.R-project.org/.

    Google Scholar 

  • Schmidt, K., Kowalczyk, R., 2006. Using scent-marking stations to collect hairsamples to monitor Eurasian lynx populations. Wildl. Soc. Bull. 34 (2), 462–466.

    Article  Google Scholar 

  • Steyer, K., Kraus, R.H.S., Mölich, T., Anders, O., Cocchiararo, B., Frosch, C., Geib, A., Götz, M., Herrmann, M., Hupe, K., Kohnen, A., Krüger, M., Müller, F., Pir, J.B., Reiners, T.E., Roch, S., Schade, U., Schiefenhövel, P., Siemund, M., Simon, O., Steeb, S., Streif, S., Streit, B., Thein, J., Tiesmeyer, A., Trinzen, M., Vogel, B., Nowak, C., 2016. Large-scale genetic census of an elusive carnivore, theEuropean wildcat (Felis s silvestris). Conserv. Genet. 17 (5), 1183–1199.

    Article  Google Scholar 

  • Thüler, K., 2002. Spatial and temporal distribution of coat patterns of EurasianLynx (Lynx lynx) in two re-introduced populations in Switzerland. KORA Berich. 13 e. KORA, 35pp. https://www.kora.ch/fileadmin/file sharing/5Bibliothek/52KORA Publikationen/520 KORA Berichte/KOR.13.2002_Coat_Patterns_of_Eurasian_Lynx.pdf. (Accessed 19 September 2017).

    Google Scholar 

  • Valière, N., 2002. GIMLET: A computer program for analysing genetic individualidentification data. Mol. Ecol. Note. 2 (3), 377–379.

    Google Scholar 

  • Wölfl, M., Bufka, L., Červený, J., Koubek, P., Heurich, M., Habel, H., Huber, T., Poost, W., 2001. Distribution and status of lynx in the border region between CzechRepublic, Germany and Austria. Acta Theriol. 46 (2), 181–194.

    Article  Google Scholar 

  • Wölfl, S., Mináriková, T., Poledník, L., Bufka, L., Wölfl, M., Engleder, T., Belotti, E., Gahbauer, M., Heurich, M., Schwaiger, M., Poledníková, K., Volfová, J., Strnad, M., 2015. Status and distribution of the transboundary lynx population of Czech Republic, Bavaria and Austria in the lynx year 2014. Report ofTrans-Lynx Project (12 pp. Accesse. 2 November 2017).

    Google Scholar 

  • Wasser, S.K., Davenport, B., Ramage, E.R., Hunt, K.E., Parker, M., Clarke, C., Stenhouse, G., 2004. Scat detection dogs in wildlife research and management:application to grizzly and black bears in the Yellowhead Ecosystem, Alberta., Canada. Can. J. Zool. 82 (3), 475–492.

    Article  Google Scholar 

  • Weingarth, K., Heibl, C., Knauer, F., Zimmermann, F., Bufka, L., Heurich, M., 2012. First estimation of Eurasian lynx (Lynx lynx) abundance and density usingdigital cameras and capture-recapture techniques in a German national park. Anim. Biodivers. Conserv. 35 (2), 197–207.

    Google Scholar 

  • Weingarth, K., Zeppenfeld, T., Heibl, C., Heurich, M., Bufka, L., Daniszová, K., Müller, J., 2015. Hide and seek: extended camera-trap session lengths and autumnprovide best parameters for estimating lynx densities in mountainous areas. Biodivers. Conserv. 24 (12), 2935–2952.

    Article  Google Scholar 

  • Wikenros, C., Jarnemo, A., Frisén, M., Kuijper, D. P. J., Schmidt, K., 2017. Mesopredator behavioral response to olfactory signals of an apex predator. J. Ethol. 35 (2), 161–168.

    Article  Google Scholar 

  • Woollett, D. A., Hurt, Aimee., Richards, Ngaio L., 2014. The current and future rolesof free-ranging detection dogs in conservation efforts. In: Gompper, M. E. (Ed.), Free-ranging Dogs and Wildlife Conservation. Oxford Univ. Press, Oxford., pp. 239–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Hollerbach.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hollerbach, L., Heurich, M., Reiners, T.E. et al. Detection dogs allow for systematic non-invasive collection of DNA samples from Eurasian lynx. Mamm Biol 90, 42–46 (2018). https://doi.org/10.1016/j.mambio.2018.02.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2018.02.003

Keywords

Navigation