Skip to main content

Genetic variability of the cold-tolerant Microtus oeconomus subspecies left behind retreating glaciers

Abstract

The current range of the root vole (Microtus oeconomus) in Europe has been shaped by climate changes, including the last glaciation. In Central Europe there are two isolated subspecies: M. oeconomus mehelyi and M. oeconomus arenicola occurring in the Pannonian lowland and the Netherlands respectively. M. oeconomus stimmingi is present in the northern part of Central Europe in the continuous range of the species distribution. To establish the influence of the postglacial isolation on the subspecies performance, we sampled 192 individuals at seven sites from the three geographic regions. Individuals were genotyped at 14 microsatellite loci highly polymorphic for all subspecies studied. This is the first extensive research presenting the diversity of M. oeconomus mehelyi from Central Europe at the molecular level. Its genetic diversity (Ar = 6.6, SD = 0.4) as well as effective population size (LDNe = 170, SD = 62) were significantly lower than in the other two subspecies, their average Ar = 7.6, SD = 0.2 and LDNe = 504, SD = 134, suggesting M. oeconomus mehelyi is most threatened with extinction. None of the subspecies showed significant genetic bottleneck signatures. The differential analysis of the genetic structure of various subgroups resulting from clustering analysis was performed to reveal the genetic relationships among individuals within and between geographic regions. We found a closer relation of M. oeconomus stimmingi with each of the isolated subspecies than between them. Moreover, we detected a clear substructure in Pannonian M. oeconomus (two subgroups), that could result from more than one colonization episode.

This is a preview of subscription content, access via your institution.

References

  1. Baláž, I., Fraňová, S., 2013. Biometric values comparison of somatic and cranial features of two Microtus oeconomus subspecies. Folia Faunistica Slovaca 18, 59–66.

    Google Scholar 

  2. Bauer, K., 1953. Zur Kenntnis von Microtus oeconomus méhelyi. Éhik.–Zool. Jahrb. 82, 70–94.

    Google Scholar 

  3. Bennett, K.D., et al., 1991. Quaternary refugia of north European trees. J. Biogeogr. 18, 103–115.

    Article  Google Scholar 

  4. Berry, O., et al., 2004. Can assignment tests measure dispersal? Mol. Ecol. 13, 551–561.

    PubMed  Article  PubMed Central  Google Scholar 

  5. Bilton, D.T., et al., 1998. Mediterranean Europe as an area of endemism for small mammals rather than a source for northwards postglacial colonization. Proc. R. Soc. Lond., B, Biol. Sci. 265, 1219–1226.

    CAS  Article  Google Scholar 

  6. Brunhoff, C., et al., 2003. Holarctic phylogeography of the root vole (Microtus oeconomus): implications for late Quarternary biogeography of high latitudes. Mol. Ecol. 12, 957–968.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  7. Chaline, J., 1987. Paléontologie des vertébrés. Dunod, Paris.

    Google Scholar 

  8. Cheng, L., et al., 2013. Hierarchical and spatially explicit clustering of DNA sequences with Baps software. Mol. Biol. Evol. 30, 1224–1228.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  9. Corander, J., et al., 2008. Bayesian spatial modeling of genetic population structure. Comput. Stat. 23, 111–129.

    Article  Google Scholar 

  10. Cornuet, J.M., Luikart, G., 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144, 2001–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Dąbrowski, M.J., et al., 2013. Cytochrome b gene (cytb) sequence diversity in a Microtus oeconomus population from Bialowieza Primeval Forest. Acta Theriol. 58, 119–126.

    PubMed  Article  PubMed Central  Google Scholar 

  12. Dąbrowski, M.J., et al., 2014. Reliability assessment of null allele detection: inconsistencies between and within different methods. Mol. Ecol. Resour. 14, 361–373.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  13. Dąbrowski, M.J., et al., 2015. ‘True’ null allele detection in microsatellite loci: a comparison of methods, assessment of difficulties and survey of possible improvements. Mol. Ecol. Resour. 15, 477–488.

    PubMed  Article  PubMed Central  Google Scholar 

  14. Di Rienzo, A., et al., 1994. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. 91, 3166–3170.

    PubMed  Article  PubMed Central  Google Scholar 

  15. Do, C., et al., 2014. NeEstimatorv2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol. Ecol. Resour. 14, 209–214.

    CAS  Article  Google Scholar 

  16. Dudich, A., et al., 1985. Súčasné poznatky o rozšírení drobných zemných cicavcov (Insectivora, Rodentia) južnej časti Podunajskej Nížiny. [The current state of knowledge on the distribution of small terrestrial mammals (Insectivora, Rodentia) in southern part of the Podunajská nížina lowland]. Spravodaj Oblastného Podunajského Múzea v Komárne 5, 157–186 (in Slovak, German summary).

    Google Scholar 

  17. Ehrich, D., Jorde, P.E., 2005. High genetic variability despite high-amplitude population cycles in lemmings. J. Mammal. 86, 380–385.

    Article  Google Scholar 

  18. Evanno, G., et al., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14, 2611–2620.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. Fewster, R.M., 2016. Some applications of genetics in statistical ecology. Adv. Stat. Anal., 1–31.

    Google Scholar 

  20. Fløjgaard, C., et al., 2009. Ice age distribution of European small mammals: insights from species distribution modelling. J. Biogeogr. 36, 1152–1163.

    Article  Google Scholar 

  21. Gauffre, B., et al., 2007. Polymorphic microsatellite loci and PCR multiplexing in the common vole: Microtus arvalis. Mol. Ecol. Notes. 7, 830–832.

    CAS  Article  Google Scholar 

  22. Goudet, J., 1995. Fstat version 1.2. A computer program to calculate F-statistics. J. Hered. 86, 485–486.

    Article  Google Scholar 

  23. Gubányi, A., et al., 2009. Distribution and conservation management of the Root vole (Microtus oeconomus) populations along the Danube in Central Europe (Rodentia: Arvicolinae). Lynx 40, 29–42.

    Google Scholar 

  24. Heckel, G., et al., 2005. Genetic structure and colonization processes in European populations of the common vole, Microtus arvalis. Evolution 59, 2231–2242.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Hedrick, P.W., 2005. A standardized genetic differentiation measure. Evolution 59, 1633–1638.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. Herman, J.S., et al., 2014. Land-bridge calibration of molecular clocks and the post-glacial colonization of Scandinavia by the Eurasian field vole Microtus agrestis. PLoS One 9.8, e103949.

    Article  CAS  Google Scholar 

  27. Hoffman, J., Amos, W., 2005. Microsatellite genotyping errors: detection approaches, common sources and consequences for paternal exclusion. Mol. Ecol. 14, 599–612.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  28. Hulejová Sládkovičová, V., et al., 2013. Synázie drobnčch zemnčch cicavcov mokradnčch biotopov Podunajskej roviny [Community of small terrestrial mammals in wetland habitats of the Podunajskú rovina lowland]. Folia Faunistica Slovaca 18, 13–19 (in Slovak, English abstract).

    Google Scholar 

  29. Huntley, B., 1988. Glacial and holocene vegetation history–20 ky to present. Europe. In: Huntley, B., Webb, T. (Eds.), Vegetation History. Kluwer Dordrecht, pp. 341–383.

    Chapter  Google Scholar 

  30. Ishibashi, Y., et al., 1999. Polymorphic microsatellite DNA markers in the field vole Microtus montebellil. Mol. Ecol. 8, 157–168.

    Google Scholar 

  31. Jaarola, M., Searle, J.B., 2002. Phylogeography of field voles (Microtus agrestis) in Eurasia inferred from mitochondrial DNA sequences. Mol. Ecol. 11, 2613–2621.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  32. Jancewicz, E., et al., 2015. mtDNA evidence for a local northern latitude Pleistocene refugium for the root vole (Microtus oeconomus, Arvicolinae, Rodentia) from Eastern Poland. J. Zoolog. Syst. Evol. Res. 53, 331–339.

    Article  Google Scholar 

  33. Jombart, T., 2008. Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24, 1403–1405.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  34. Jombart, T., et al., 2010. Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genet. 11, 94.

    PubMed  PubMed Central  Article  Google Scholar 

  35. Jost, L., 2008. GST and its relatives do not measure differentiation. Mol. Ecol. 17, 4015–4026.

    PubMed  Article  PubMed Central  Google Scholar 

  36. Kaeuffer, R., et al., 2007. Unexpected heterozygosity in an island mouflon population founded by a single pair of individuals. Proc. R. Soc. B 274, 527–533.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  37. Kalinowski, S.T., 2010. The computer program STRUCTURE does not reliably identify the main genetic clusters within species: simulations and implications for human population structurs. Heredity, 1–8.

    Google Scholar 

  38. Konovalov, D.A., et al., 2004. Kingroup: a program for pedigree relationship reconstruction and kin group assignment using genetic markers. Mol. Ecol. Notes. 4, 779–782.

    Article  Google Scholar 

  39. Kopelman, N.M., et al., 2015. Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol. Ecol. Resour. 15, 1179–1191.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. Kowalski, K., 2001. Pleistocene rodents of Europe. Folia quaternaria 72, 3–389.

    Google Scholar 

  41. La Haye, M.J.J., et al., 2004. Beschermingsplan Noordse Woelmuis. Expertisecentrum LNV.

    Google Scholar 

  42. La Haye, M.J.J., et al., 2017. Genetic monitoring to evaluate reintroduction attempts of a highly endangered rodent. Conserv. Genet. 18, 877–892.

    Article  CAS  Google Scholar 

  43. Lande, R., 1999. Extinction risk from anthropogenic, ecological, and genetic factors. In: Landweber, L.F., Dobson, A.P. (Eds.), Genetics and the Extinction of Species: DNA and the Conservation of Biodiversity. rinceton University Press Princeton, New Jersey, pp. 1–11.

    Google Scholar 

  44. Leijs, R., et al., 1999. Low genetic differentiation in north-west European populations of the locally endangered root vole, Microtus oeconomus. Biol. Conserv. 87, 39–48.

    Article  Google Scholar 

  45. Luikart, G., et al., 1998. Usefulness of molecular markers for detecting population bottlenecks via monitoring genetic change. Mol. Ecol. 7, 963–974.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  46. Lundqvist, A., et al., 2011. Fennoscandian phylogeography of the common shrew Sorex araneus: postglacial recolonisation—combining information from chromosomal variation with mitochondrial DNA data. Acta Theriol. 56, 103–116.

    Article  Google Scholar 

  47. Mantel, N., 1967. The detection of disease clustering and a generalized regression approach. Cancer Res. 27, 209–220.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Mauritzen, M., et al., 1999. Root vole movement patterns: do ditches function as habitat corridors? J. Appl. Ecol. 36, 409–421.

    Article  Google Scholar 

  49. Meiri, S., Dayan, T., 2003. On the validity of Bergmann‘s rule. J. Biogeogr. 3, 331–351.

    Article  Google Scholar 

  50. Meirmans, P.G., 2012. The trouble with isolation by distance. Mol. Ecol. 21 (12), 2839–2846.

    PubMed  Article  PubMed Central  Google Scholar 

  51. Méhelyi, L., 1908. Két új pocokfaj a Magyar faunában [Two new vole-species in fauna of Hungary]. Állattani Közlemények 7, 3–14 (in Hungarian).

    Google Scholar 

  52. Nadachowski, A., 1989. Origin and history of the present rodent fauna in Poland based on fossil evidence. Acta Theriol. 34, 37–53.

    Article  Google Scholar 

  53. Nei, M., 1973. Analysis of gene diversity in subdivided populations. Proc. Natl. Acad. Sci. 70, 3321–3323.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  54. Neuwald, J.L., 2010. Population isolation exacerbates conservation genetic concerns in the endangered Amargosa vole, Microtus californicus scirpensis. Biol. Conserv. 143, 2028–2038.

    Article  Google Scholar 

  55. Pachinger, K., 1994. Habitat a perspektívy prežitia hraboša severského panónskeho (Microtus oeconomus mehelyi Éhik, 1928) na Slovensku [Habitat and perspectives of survival of root vole pannonian (Microtus oeconomus mehelyi Éhik, 1928) in Slovakia]. Výskum a ochrana cicavcov na Slovensku 1, 37–40 (in Slovak, English summary).

    Google Scholar 

  56. Pachinger, K., 2003. Rozšírenie a d’alšia perspektíva existencie reliktného druhu Microtus oeconomus na území Slovenska [Distribution and further perspectives for existence of the relict species Microtus oeconomus in the territory of Slovakia]. Správy Slovenskej Zoologickej Spoločnosti 21, 113–116 (in Slovak, English abstract).

    Google Scholar 

  57. Peakall, R., Smouse, P., 2006. GenAlex 6: genetic analysis in Excel: population genetic software for teaching and research. Mol. Ecol. Notes 6, 288–295.

    Article  Google Scholar 

  58. Pilot, M., et al., 2010. Temporally stable variability and dynamic kinship structure in a fluctuating population of the root vole Microtus oeconomus. Mol. Ecol. 19, 2800–2812.

    Article  Google Scholar 

  59. Pritchard, J.K., et al., 2000. Inference of population structure using multilocus genotype data. Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. R Development Core Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  61. Rácz, G.R., et al., 2005. Morphometric differences among root vole (Muridae: microtus oeconomus) populations in Hungary. Acta Zool. Acad. Sci. Hung. 51, 39–53.

    Google Scholar 

  62. Rousset, F., 2008. Genepopí007: a complete reimplementation of the Genepop software for Windows and Linux. Mol. Ecol. Resour. 8, 103–106.

    PubMed  Article  PubMed Central  Google Scholar 

  63. Russell, J.C., Fewster, R.M., 2009. Evaluation of the linkage disequilibrium method for estimating effective population size. Model. Demogr. Process. Mark. Popul., 291–320.

    Google Scholar 

  64. Sałata-Pilacińska, B., 1990. The southern range of the root vole in Poland. Acta Theriol. 35, 53–67.

    Article  Google Scholar 

  65. Sommer, R.S., Nadachowski, A., 2006. Glacial refugia of mammals in Europe: evidence from fossil records. Mamm. Rev. 36, 251–265.

    Article  Google Scholar 

  66. Stewart, J.R., Lister, A.M., 2001. Cryptic northern refugia and the origins of the modern biota. Trends in Ecol. Evol. 16, 608–613.

    Article  Google Scholar 

  67. Stewart, W.A., et al., 1998. Isolation and characterization of highly polymorphic microsatellites in the water vole, Arvicola terrestris. Mol. Ecol. 7, 1247–1263.

    Article  Google Scholar 

  68. Stojak, J., et al., 2015. Post-glacial colonization of eastern Europe from the Carpathian refugium: evidence from mitochondrial DNA of the common vole Microtus arvalis. Biol. J. Linn.Soc. 115, 927–939.

    Article  Google Scholar 

  69. Stojak, J., et al., 2016. Between the Balkans and the Baltic: phylogeography of a common vole mitochondrial DNA lineage limited to Central Europe. PLoS One 11 (12), e0168621.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Stollmann, A., Ambros, M., 1998. Hraboš severskýpannónsky (Microtus oeconomus Pallas, 1776 ssp. méhelyi Éhik, 1928)–kriticky ohrozenýdruh cicavca na Slovensku [Root vole (Microtus oeconomus Pallas, 1776 ssp. mehelyi Éhik, 1928)–endangered mammal species in Slovakia]. Výskum a ochrana cicavcov na Slovensku 3, 119–126 (in Slovak, English abstract).

    Google Scholar 

  71. Takezaki, N., et al., 2014. POPTREEW: Web version of POPTREE for constructing population trees from allele frequency data and computing other population statistics. Mol. Biol. Evol. 31, 1622–1624.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  72. Tast, J., 1982. Microtus oeconomus (Pallas, 1776). In: Niethammer, J., Krapp, F. (Eds.), Handbuch der Säugetiere Europas. Akademische Verlagsgesellschaft, Wiesbade, pp. 145–148.

    Google Scholar 

  73. Thissen, J.B.M., et al., 2015. The distribution of the Pannonic root vole (Microtus oeconomus mehelyi Éhik, 1928) in Austria. Lutra 58, 3–22.

    Google Scholar 

  74. Valiére, N., 2002. Gimlet: a computer program for analysing genetic individual identification data. Mol. Ecol. Notes 2, 377–379.

    Google Scholar 

  75. Van Apeldoorn, R.C., 1999. Microtus oeconomus. In: Mitchell-Jones, W. (Ed.), The Atlas of European Mammals. Academic press, London, pp. 244–245.

    Google Scholar 

  76. Van de Zande, L., et al., 2000. Microsatellite analysis of population structure and genetic differentiation within and between populations of the root vole, Microtus oeconomus in the Netherlands. Mol. Ecol. 9, 1651–1656.

    PubMed  Article  PubMed Central  Google Scholar 

  77. Van den Brink, V., et al., 2011. Estimating population differentiation between isolated root vole (Microtus oeconomus) populations in the Netherlands using geometric morphometrics. Lutra 54, 111–121.

    Google Scholar 

  78. Van Wijngaarden, A., Zimmermann, K., 1965. Zur Kenntnis von Microtus oeconomus arenicola (de Sélys Longchamps, 1841). I. Taxonomie.–Z. Säugetierkunde. 30, 129–136.

    Google Scholar 

  79. Vuorinen, J.A., Eskelinen, O., 2005. Long-term stability of allozyme frequencies in wood lemming Myopus schisticolor, population with a biased sex-ratio and density fluctuations. Heredity 94, 443–447.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  80. Walser, B., Heckel, G., 2008. Microsatellite markers for the common vole (Microtus arvalis) and their cross-species utility. Conserv. Gen. 9, 479–481.

    CAS  Article  Google Scholar 

  81. Waples, R.S., Do, C., 2008. LDNe: a program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8, 753–756.

    PubMed  Article  PubMed Central  Google Scholar 

  82. Waples, R.S., Gaggiotti, O., 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity. Mol. Ecol. 15, 1419–1439.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  83. Wójcik, J.M., et al., 2010. Phylogeographic signatures of northward post-glacial colonization from high-latitude refugia: a case study of bank voles using museum specimens. J. Zool. 281 (4), 249–262.

    Google Scholar 

  84. Wright, S., 1969. Evolution and the Genetics of Populations, Vol. 2. University of Chicago Press Chicago.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Veronika Hulejová Sládkovičová.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hulejová Sládkovičová, V., Dąbrowski, M.J., Žiaka, D. et al. Genetic variability of the cold-tolerant Microtus oeconomus subspecies left behind retreating glaciers. Mamm Biol 88, 85–93 (2018). https://doi.org/10.1016/j.mambio.2017.11.007

Download citation

Keywords

  • Genetic structure
  • Genetic variability
  • Glaciation
  • Isolation
  • Microtus oeconomus
  • Subspecies