Skip to main content

Advertisement

Log in

Use of early and late successional forest patches by the endangered Lowland tapir Tapirus terrestris (Perissodactyla: Tapiridae)

  • Original investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Large herbivores play crucial ecological roles, affecting the structure and function of terrestrial ecosystems. Their effect, however, depend on how they select plants and vegetation patches for foraging. At the landscape scale, succession is one of the processes that should generate vegetation patches with different nutritional quality, affecting selection by herbivores. Earlier successional stages should be preferred as they are dominated by plants with nutritious and palatable leaves. Here, we investigate if the Lowland tapir prefers early compared to late successional forest patches, aiming at contributing to the understanding of the ecological role of the largest terrestrial South American herbivore, and to conservation strategies for this endangered species. We sampled 12 vegetation patches varying in successional stages across a 20.000-ha continuously-forested landscape in the Brazilian Atlantic Forest, recording tapirs through standardized camera trap and track surveys, and quantifying vegetation structure and treefall gaps. Whereas the number of individuals using each patch was not influenced by successional stage, intensity of use was higher in patches in earlier successional stages, in particular patches with higher density of smaller trees and higher cover of treefall gaps. Although inferences on the effects of tapir on plant community depends on future, smaller-scale studies, our results suggest herbivory by tapirs affects forest regeneration, potentially contributing to the maintenance of plant diversity. Results also point out to the potential of mosaics encompassing old-growth and secondary forests for the conservation of the Lowland tapir.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agustí, J., Antón, M., 2002. Mammoths, Sabertooths, and Hominids: 65 Million Years of Mammalian Evolution in Europe. Columbia University Press, New York.

    Google Scholar 

  • Bodmer, R., 1990. Fruit patch size and frugivory in the lowland tapir Tapirus terrestris. J. Zool. 222, 121–128, http://dx.doi.org/10.1111/j.1469-7998.1990.tb04034.x.

    Google Scholar 

  • Bolker, B.M., Brooks, M.E., Clark, C.J., Geange, S.W., Poulsen, J.R., Stevens, M.H.H., White, J.-S.S., 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24, 127–135, http://dx.doi.org/10.1016/j.tree.2008.10.008.

    PubMed  Google Scholar 

  • Brasil, 1994. Resoluçao CONAMA no 1, de 31 de janeiro de 1994. http://www.mma.gov.br/port/conama/legislacao/CONAMA RES CONS 1994 001.pdf.

    Google Scholar 

  • Bryant, J., Kuropat, P., 1980. Selection of winter forage by sub-arctic browsing vertebrates—the role of plant chemistry. Annu. Rev. Ecol. Syst. 11, 261–285, http://dx.doi.org/10.1146/annurev.es.11.110180.001401.

    CAS  Google Scholar 

  • Burnham, K., Anderson, D., 2004. Multimodel inference—understanding AIC and BIC in model selection. Sociol. Methods Res. 33, 261–304, http://dx.doi.org/10.1177/0049124104268644.

    Google Scholar 

  • Cabrera, J.A., Molina, E., González, T., Armenteras, D., 2016. Does plan B work? Home range estimations from stored on board and transmitted data sets produced by GPS-telemetry in the Colombian Amazon. Rev. Biol. Trop. 64, 1441–1450.

    PubMed  Google Scholar 

  • Camargo-Sanabria, A.A., Mendoza, E., 2016. Interactions between terrestrial mammals and the fruits of two neotropical rainforest tree species. Acta Oecol. 73, 45–52, http://dx.doi.org/10.1016/j.actao.2016.02.005.

    Google Scholar 

  • Canale, G.R., Peres, C.A., Guidorizzi, C.E., Gatto, C.A.F., Kierulff, M.C.M., 2012. Pervasive defaunation of forest remnants in a tropical biodiversity hotspot. PLoS One 7, e41671, http://dx.doi.org/10.1371/journal.pone.0041671.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cates, R., Orians, G., 1975. Successional status and palatability of plants to generalized herbivores. Ecology 56, 410–418, http://dx.doi.org/10.2307/1934971.

    Google Scholar 

  • Chandler, R.B., Royle, J.A., King, D.I., 2011. Inference about density and temporary emigration in unmarked populations. Ecology 92, 1429–1435, http://dx.doi.org/10.1890/10-2433.1.

    PubMed  Google Scholar 

  • Chazdon, R.L., Peres, C.A., Dent, D., Sheil, D., Lugo, A.E., Lamb, D., Stork, N.E., Miller, S.E., 2009. The potential for species conservation in tropical secondary forests. Conserv. Biol. 23, 1406–1417, http://dx.doi.org/10.1111/j.1523-1739.2009.01338.x.

    PubMed  Google Scholar 

  • Clark, D., 1996. Abolishing virginity. J. Trop. Ecol. 12, 735–739, http://dx.doi.org/10.1017/S0266467400009937.

    Google Scholar 

  • Clauss, M., Wilkins, T., Hartley, A., Hatt, J.-M., 2009. Diet composition, food intake, body condition, and fecal consistency in captive tapirs (Tapirus spp.) in UK Collections. Zoo Biol. 28, 279–291, http://dx.doi.org/10.1002/zoo.20225.

    CAS  PubMed  Google Scholar 

  • Coley, P., Barone, J., 1996. Herbivory and plant defenses in tropical forests. Annu. Rev. Ecol. Syst. 27, 305–335, http://dx.doi.org/10.1146/annurev.ecolsys.27.1.

    Google Scholar 

  • Crawley, M.J., 2007. The R Book. John Wiley & Sons, Ltd, Chichester, UK, http://dx.doi.org/10.1002/9780470515075.

    Google Scholar 

  • Danell, K., Bergstrom, R., Duncan, P., Pastor, J. (Eds.), 2006. Large Herbivore Ecology, Ecosystem Dynamics and Conservation. Cambridge University Press, Cambridge, http://dx.doi.org/10.1017/CBO9780511617461.

    Google Scholar 

  • Foerster, C.R., Vaughan, C., 2002. Home range, habitat use, and activity of Baird’s tapir in Costa Rica. Biotropica 34, 423, http://dx.doi.org/10.1646/0006-3606(2002)034[0423:HRHUAA]2.0.CO;2.

    Google Scholar 

  • Gill, R., 2006. The influence of large herbivores on tree recruitment and forest dynamics. In: Danell, K., Bergstrom, R., Duncan, P., Pastor, J. (Eds.), Large Herbivore Ecology, Ecosystem Dynamics and Conservation. Cambridge University Press, Cambridge, pp. 170–202, http://dx.doi.org/10.1017/CBO9780511617461.008.

    Google Scholar 

  • Guariguata, M.R., Ostertag, R., 2001. Neotropical secondary forest succession: changes in structural and functional characteristics. For. Ecol. Manage. 148, 185–206, http://dx.doi.org/10.1016/S0378-1127(00)00535-1.

    Google Scholar 

  • Harrison, X.A., 2014. Using observation-level random effects to model overdispersion in count data in ecology and evolution. PeerJ 2, e616, http://dx.doi.org/10.7717/peerj.616.

    PubMed  PubMed Central  Google Scholar 

  • Herms, D., Mattson, W., 1992. The dilemma of plants—to grow or defend. Q. Rev. Biol. 67, 283–335, http://dx.doi.org/10.1086/417659.

    Google Scholar 

  • Hester, A.J., Bergman, M., Iason, G.R., Moen, J., 2006. Impacts of large herbivores on plant community structure and dynamics. In: Danell, K., Bergstrom, R., Duncan, P., Pastor, J. (Eds.), Large Herbivore Ecology, Ecosystem Dynamics and Conservation. Cambridge University Press, Cambridge, pp. 97–141, http://dx.doi.org/10.1017/CBO9780511617461.006.

    Google Scholar 

  • Hibert, F., Sabatier, D., Andrivot, J., Scotti-Saintagne, C., Gonzalez, S., Prévost, M.-F., Grenand, P., Chave, J., Caron, H., Richard-Hansen, C., 2011. Botany, genetics and ethnobotany: a crossed investigation on the elusive tapir’s diet in French Guiana. PLoS One 6, e25850, http://dx.doi.org/10.1371/journal.pone.0025850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuijper, D.P.J., Cromsigt, J.P.G.M., Churski, M., Adam, B., Jędrzejewska, B., Jędrzejewski, W., 2009. Do ungulates preferentially feed in forest gaps in European temperate forest? For. Ecol. Manage. 258, 1528–1535, http://dx.doi.org/10.1016/j.foreco.2009.07.010.

    Google Scholar 

  • Lizcano, D., Cavelier, J., 2000. Daily and seasonal activity of the Mountain tapir (Tapirus pinchaque) in the Central Andes of Colombia. J. Zool. 252, 429–435, http://dx.doi.org/10.1111/j.1469-7998.2000.tb01225.x.

    Google Scholar 

  • MacFadden, B., 2000. Cenozoic mammalian herbivores from the Americas: reconstructing ancient diets and terrestrial communities. Annu. Rev. Ecol. Syst. 31, 33–59, http://dx.doi.org/10.1146/annurev.ecolsys.31.1.33.

    Google Scholar 

  • MacKenzie, D., Nichols, J., Lachman, G., Droege, S., Royle, J., Langtimm, C., 2002. Estimating site occupancy rates when detection probabilities are less than one. Ecology 83, 2248–2255, http://dx.doi.org/10.2307/3072056.

    Google Scholar 

  • McCook, L., 1994. Understanding ecological community succession—causal-models and theories, a review. Vegetatio 110, 115–147, http://dx.doi.org/10.1007/BF00033394.

    Google Scholar 

  • Medici, E.P., 2010. Assessing the Viability of Lowland Tapir Populations in a Fragmented Landscape (PhD). University of Kent, Canterbury, United Kingdom.

    Google Scholar 

  • Naranjo, E.J., 1995. Abundancia y uso de hábitat del tapir (Tapirus bairdii) en un bosque tropical húmedo de Costa Rica. Vida Silv. Neotopical 4, 20–31.

    Google Scholar 

  • Norris, D., Peres, C.A., Michalski, F., Hinchsliffe, K., 2008. Terrestrial mammal responses to edges in Amazonian forest patches: a study based on track stations. Mammalia 72, http://dx.doi.org/10.1515/mamm.2008.002.

    Google Scholar 

  • Olff, H., Vera, F., Bokdam, J., Bakker, E., Gleichman, J., de Maeyer, K., Smit, R., 1999. Shifting mosaics in grazed woodlands driven by the alternation of plant facilitation and competition. Plant Biol. 1, 127–137, http://dx.doi.org/10.1055/s-2007-978499.

    Google Scholar 

  • Padilla, M., Dowler, R.C., 1994. Tapirus terrestris. Mamm. Species 1. 10.2307/3504109.

    Google Scholar 

  • Parry, L., Barlow, J., Peres, C.A., 2007. Large-vertebrate assemblages of primary and secondary forests in the Brazilian Amazon. J. Trop. Ecol. 23, 653–662, http://dx.doi.org/10.1017/S0266467407004506.

    Google Scholar 

  • Pastor, J., Naiman, R., 1992. Selective foraging and ecosystem processes in Boreal forest. Am. Nat. 139, 690–705, http://dx.doi.org/10.1086/285353.

    Google Scholar 

  • Peel, M.C., Finlayson, B.L., McMahon, T.A., 2007. Updated world map of the Köppen-Geiger climate classification. Hydrol. Earth Syst. Sci. 11, 1633–1644, http://dx.doi.org/10.5194/hess-11-1633-2007.

    Google Scholar 

  • Pinotti, B.T., Pagotto, C.P., Pardini, R., 2012. Habitat structure and food resources for wildlife across successional stages in a tropical forest. For. Ecol. Manage. 283, 119–127, http://dx.doi.org/10.1016/j.foreco.2012.07.020.

    Google Scholar 

  • Poorter, L., Bongers, F., 2006. Leaf traits are good predictors of plant performance across 53 rain forest species. Ecology 87, 1733–1743, http://dx.doi.org/10.1890/0012-9658(2006)87[1733:LTAGPO]2.0.CO;2.

    PubMed  Google Scholar 

  • Poorter, L., de Plassche, M., Willems, S., Boot, R., 2004. Leaf traits and herbivory rates of tropical tree species differing in successional status. Plant Biol. 6, 746–754, http://dx.doi.org/10.1055/s-2004-821269.

    CAS  PubMed  Google Scholar 

  • R Development Core Team, 2016. R: A Language and Environment for Statistical Computing. the R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Reich, P.B., Walters, M.B., Ellsworth, D.S., 1992. Leaf life-span in relation to leaf, plant, and stand characteristics among diverse ecosystems. Ecol. Monogr. 62, 365–392, http://dx.doi.org/10.2307/2937116.

    Google Scholar 

  • Rosenthal, J., Kotanen, P., 1994. Terrestrial plant tolerance to herbivory. Trends Ecol. Evol. 9, 145–148, http://dx.doi.org/10.1016/0169-5347(94)90180-5.

    CAS  PubMed  Google Scholar 

  • Royle, J.A., Nichols, J.D., 2003. Estimating abundance from repeated presence-absence data or point counts. Ecology 84, 777–790, http://dx.doi.org/10.1890/0012-9658(2003)084[0777:EAFRPA]2.0. CO;2.

    Google Scholar 

  • Ruiz-Guerra, B., Guevara, R., Mariano, N.A., Dirzo, R., 2010. Insect herbivory declines with forest fragmentation and covaries with plant regeneration mode: evidence from a Mexican tropical rain forest. Oikos 119, 317–325, http://dx.doi.org/10.1111/j.1600-0706.2009.17614.x.

    Google Scholar 

  • Salas, L., 1996. Habitat of the Lowland tapir (Tapirus terrestris) in the Tabaro River valley, southern Venezuela. Can. J. Zool. 74, 1452–1458, http://dx.doi.org/10.1139/z96-160.

    Google Scholar 

  • Schulze, E.-D., Beck, E., Müller-Hohenstein, K., 2005. Plant Ecology. Springer, Berlin, http://dx.doi.org/10.1093/aob/mcj018.

    Google Scholar 

  • Senft, R., Coughenour, M., Bailey, D., Rittenhouse, L., Sala, O., Swift, D., 1987. Large herbivore foraging and ecological hierarchies. Bioscience 37, 789-, http://dx.doi.org/10.2307/1310545.

    Google Scholar 

  • Shipley, L., Illius, A., Danell, K., Hobbs, N., Spalinger, D., 1999. Predicting bite size selection of mammalian herbivores: a test of a general model of diet optimization. Oikos 84, 55–68, http://dx.doi.org/10.2307/3546866.

    Google Scholar 

  • Simpson, B.K., Shukor, M.N., Magintan, D., Ling, W.S., 2013. Food selection of the Malayan Tapir (Tapirus indicus) under semi-wild conditions. In: Murad, A.M.H.A., Yen, C.C., Ismail, E.S., Maskat, M.Y., Noorani, M.S.M., Ibrahim, N., Karim, N.H.B.A., Yahya, R., Khalid, R.M., Ismail, W.R., Ibrahim, Z. (Eds.), The 2013 UKM FST Postgraduate Colloquium Presented at the AIP Conference Proceedings. AIP, Publishing, Selangor Malaysia, pp. 317–324, http://dx.doi.org/10.1063/1.4858676.

    Google Scholar 

  • Stephens, D.W., Krebs, J.R., 1986. Foraging Theory, Monographs in Behavior and Ecology. Princeton University Press, Princeton, N.J (978-0-691-08441-1978-0-691-08442-8).

    Google Scholar 

  • Tobler, M.W., Carrillo-Percastegui, S.E., Powell, G., 2009. Habitat use, activity patterns and use of mineral licks by five species of ungulate in south-eastern Peru. J. Trop. Ecol. 25, 261–270, http://dx.doi.org/10.1017/S0266467409005896.

    Google Scholar 

  • Tobler, M., 2002. Habitat use and diet of Baird’s tapirs (Tapirus bairdii) in a montane cloud forest of the Cordillera de Talamanca, Costa Rica. Biotropica 34, 468–474, http://dx.doi.org/10.1646/0006-3606(2002)034[0468:HUADOB]2.0.CO;2.

    Google Scholar 

  • Vancleve, K., Oliver, L., Schlentner, R., Viereck, L., Dyrness, C., 1983. Productivity and nutrient cycling in Taiga forest ecosystems. Can. J. For. Res. 13, 747–766, http://dx.doi.org/10.1139/x83-105.

    Google Scholar 

  • Wright, S.J., 2010. The future of tropical forests: future tropical forests. Ann. N. Y. Acad. Sci. 1195, 1–27, http://dx.doi.org/10.1111/j.1749-6632.2010.05455.x.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juliana Ranzani de Luca.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Luca, J.R., Pardini, R. Use of early and late successional forest patches by the endangered Lowland tapir Tapirus terrestris (Perissodactyla: Tapiridae). Mamm Biol 86, 107–114 (2017). https://doi.org/10.1016/j.mambio.2017.08.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2017.08.001

Keywords

Navigation