Abstract
Sloths are morphologically specialized in upside-down quadrupedal suspensory locomotion. The evolution of this locomotor mode lead to a loss of asymmetrical gaits and thus a reduced necessity of powerful extension of the spine in the sagittal plane. It is here tested whether this aberrant locomotor mode is reflected in the three-dimensional (3D) intramuscular architecture of the dorsovertebral muscles of the two-toed sloth. Layer wise dissection of the transversospinal system, the longissimus, and the iliocostalis allowed for the 3D digitization of individual muscle fascicles. Fascicle length and orientation is quantified, and anatomical cross sectional area and muscle volume is calculated. Moment arms of the dorsovertebral muscles to the intervertebral joints are determined. Architectural properties of the dorsovertebral muscles in the sloth are in agreement with previous kinematic studies and in contrast to hitherto sampled upright quadrupedal mammals. The agreement of architectural properties with in vivo function documented in this study further characterizes the specific functional morphology of sloths, but also suggests a close relationship of back muscle architectural properties with locomotor mode of mammals in general.
Similar content being viewed by others
References
Abdala, V., Moro, S., 2006. Comparative myology of the forelimb of Liolaemus sand lizards (Liolaemidae). Acta Zool. 87, 1–12.
Biewener, A.A., Konieczynski, D.D., Baudinette, R.V., 1998. In vivo muscle force-length behavior during steady-speed hopping in tammar wallabies. J. Exp. Biol. 201, 1681–1694.
Blemker, S.S., Delp, S.L., 2005. Three-dimensional representation of complex muscle architectures and geometries. Ann. Biomed. Eng. 33, 661–673.
Cutts, A., Seedhom, B.B., 1993. Validity of cadaveric data for muscle physiological cross-sectional area ratios: a comparative study of cadaveric and in-vivo data in human thigh muscles. Clin. Biomech. (Bristol, Avon) 8, 156–162.
Dickinson, M.H., Farley, C.T., Full, R.J., Koehl, M., Kram, R., Lehman, S., 2000. How animals move: an integrative view. Science 288, 100–106.
Dumas, G.A., Poulin, M.J., Roy, B., Gagnon, M., Jovanovic, M., 1988. A three-dimensional digitization method to measure trunk muscle lines of action. Spine 13, 532–541.
Dumas, G.A., Poulin, M.J., Roy, B., Gagnon, M., Jovanovic, M., 1991. Orientation and moment arms of some trunk muscles. Spine 16, 293–303.
Farfan, H.F., 1995. Form and function of the musculoskeletal system as revealed by mathematical analysis of the lumbar spine. An essay. Spine 20, 1462–1474.
Fischer, M.S., 2001. Locomotory organs of mammals: new mechanics and feed-back pathways but conservative central control. Zoology 103, 230–239.
Fisher, R.E., Scott, K.M., Naples, V.L., 2007. Forelimb myology of the pygmy hippopotamus (Choeropsis liberiensis). Anat. Rec. (Hoboken) 290, 673–693.
Gans, C., 1982. Fiber architecture and muscle function. Exercise Sport Sci. Rev. 10, 160–207.
Gillis, G.B., Biewener, A.A., 2001. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus). J. Exp. Biol. 204, 2717–2731.
Goffart, M., 1971. Function and Form in the Sloth. Pergamon Press, Oxford.
Gorb, S.N., Fischer, M.S., 2000. Three-dimensional analysis of the arrangement and length distribution of fascicles in the triceps muscle of Galea musteloides (Roden-tia, Cavimorpha). Zoomorphology 120, 91–97.
Haas, A., Fischer, M.S., 1997. Three-dimensional reconstruction of histological sections using modern product-design software. Anat. Rec. 249, 510–516.
Herrel, A., Vanhoydonck, B., Porck, J., Irschick, D.J., 2008. Anatomical basis of differences in locomotor behavior in Anolis lizards: a comparison between two ecomorphs. Bull. Mus. Comp. Zool. 159, 213–238.
Hesse, B., 2011. Funktionsmorphologische Anpassungen an den aufrechten Gang in der perivertebralen Lumbalmuskulatur des Menschen. In: Biologisch-Pharmazeutische Fakultät). Friedrich-Schiller-University, Jena, pp. 108.
Hildebrand, M., 1977. Analysis of asymmetrical gaits. J. Mammal. 58, 131–156.
Humphry, G.M., 1869. The myology of the limbs of the Unau, the Ai, the two-toed anteater, and the Pangolin. J. Anat. Physiol. 3, 2–78.
Kawakami, Y., Ichinose, Y., Fukunaga, T., 1998. Architectural and functional features of humantriceps surae muscles during contraction. J. Appl. Physiol. 85, 398–404.
Kim, S.Y., Boynton, E.L., Ravichandiran, K., Fung, L.Y., Bleakney, R., Agur, A.M., 2007. Three-dimensional study of the musculotendinous architecture of supraspina-tus and its functional correlations. Clin. Anat. (New York, NY) 20, 648–655.
Lee, D., Ravichandiran, K., Jackson, K., Fiume, E., Agur, A., 2012. Robust estimation of physiological cross-sectional area and geometric reconstruction for human skeletal muscle. J. Biomech. 45, 1507–1513.
Lieber, R.L., 2002. Skeletal Muscle Structure, Function, and Plasticity. Lippincott Williams & Wilkins, Baltimore, MD, USA.
Lieber, R.L., Fridén, J., 2001. Clinical significance of skeletal muscle architecture. Clin. Orthop. Relat. Res. 23, 140–151.
Lucae, J.C.G., 1883. Die Statik und Mechanik der Quadrupeden an dem Skelet und den Muskelneines Lemur und eines Choloepus. Mahlau, Frankfurt am Main, Germany.
Mackintosh, H., 1870. On the myology of the genus Bradypus. Proc. R. Ir. Acad. Sci. 1, 517–529.
Mackintosh, H., 1875. On the muscular anatomy of Choloepus didactylus. Proc. R. Ir. Acad. Sci., 66–78.
McNeill Alexander, R., 2002. Tendon elasticity and muscle function. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 133, 1001–1011.
Mendel, F.C., 1985. Adaptations for suspensory behavior in the limbs of two-toed sloths. In: Montgomery, G.G. (Ed.), The Evolution and Ecology of Armadillos, Sloths, and Vermilinguas. Smithsonian Institution Press, Washington, pp. 151–162.
Mendel, F.C., 1981a. Foot of two-toed sloths: its anatomy and potential uses relative to size of support. J. Morphol. 170, 357–372.
Mendel, F.C., 1981b. The hand of two-toed sloths (Choloepus): its anatomy and potential uses relative to size of support. J. Morphol. 169, 1–19.
Miller, R.A., 1935. Functional adaptations in the forelimb of the sloths. J. Mamm. 16, 38–51.
Molnar, J.L., Pierce, S.E., Hutchinson, J.R., 2014. An experimental and morphometric test of the relationship between vertebral morphology and joint stiffness in Nile crocodiles (Crocodylus niloticus). J. Exp. Biol. 217, 758–768.
Moon, B.R., Gans, C., 1998. Kinematics, muscular activity and propulsion in gopher snakes. J. Exp. Biol. 201, 2669–2684.
Norris, CM., 1995. Spinal stabilisation. 3. Stabilisation mechanisms of the lumbar spine. Physiotherapy 81, 72–79.
Nyakatura, J.A., 2012. The convergent evolution of suspensory posture and locomotion in tree sloths. J. Mamm. Evol. 19, 225–234.
Nyakatura, J.A., Andrada, E., 2013. A mechanical link model of two-toed sloths: no pendular mechanics during suspensory locomotion. Acta Theriol. 58, 83–93.
Nyakatura, J.A., Fischer, M.S., 2010a. Functional morphology and three-dimensional kinematics of the thoraco-lumbar region of the spine of the two-toed sloth. J. Exp. Biol. 213, 4278–4290.
Nyakatura, J.A., Fischer, M.S., 2010b. Three-dimensional kinematic analysis of the pectoral girdle during upside-down locomotion of two-toed sloths (Choloepus didactylus, Linne 1758). Front. Zool. 7, 21.
Nyakatura, J.A., Fischer, M.S., 2011. Functional morphology of the muscular sling at the pectoral girdle in tree sloths: convergent morphological solutions to new functional demands? J. Anat. 219, 360–374.
Nyakatura, J.A., Petrovitch, A., Fischer, M.S., 2010. Limb kinematics during locomotion in the two-toed sloth (Choloepus didactylus, Xenarthra) and its implications for the evolution of the sloth locomotor apparatus. Zoology (Jena) 113, 221–234.
Panjabi, M.M., Oxland, T.R., Yamamoto, I., Crisco, J.J., 1994. Mechanical behavior of the human lumbar and lumbosacral spine as shown by three-dimensional load-displacement curves. J. Bone Joint Surg. Am. Vol. 76, 413–424.
Poelstra, K.A., Eijkelkamp, M.F., Veldhuizen, A.G., 2000. The geometry of the human paraspinal muscles with the aid of three-dimensional computed tomography scans and 3-Space Isotrak. Spine 25, 2176–2179.
Ritter, D.A., 1995. Epaxial muscle function during locomotion in a lizard (Varanus salvator) and the proposal of a key innovation in the vertebrate axial musculoskeletal system. J. Exp. Biol. 198, 2477–2490.
Ritter, DA, 1996. Axial muscle function during lizard locomotion. J. Exp. Biol. 199, 2499–2510.
Roberts, T.J., 1997. Muscular force in running Turkeys: the economy of minimizing work. Science 275, 1113–1115.
Roberts, T.J., 2002. The integrated function of muscles and tendons during locomotion. Comp. Biochem. Physiol., A: Mol. Integr. Physiol. 133, 1087–1099.
Roberts, T.J., Azizi, E., 2011. Flexible mechanisms: the diverse roles of biological springs in vertebrate movement.J. Exp. Biol. 214, 353–361.
Rome, L.C., Funke, R.P., Alexander, R.M., Lutz, G., Aldridge, H., Scott, F., Freadman, M., 1988. Why animals have different muscle fibre types. Nature 335, 824–827.
Rosatelli, A.L., Ravichandiran, K., Agur, A.M., 2008. Three-dimensional study of the musculotendinous architecture of lumbar multifidus and its functional implications. Clin. Anat. (New York, NY) 21, 539–546.
Schilling, N., 2009. Metabolic profile of the perivertebral muscles in small therian mammals: implications for the evolution of the mammalian trunk musculature. Zoology 112, 279–304.
Schilling, N., 2011. Evolution of the axial system incraniates: morphology and function of the perivertebral musculature. Front. Zool. 8, 4.
Schilling, N., Carrier, D.R., 2010. Function of the epaxial muscles in walking, trotting and galloping dogs: implications for the evolution of epaxial muscle function in tetrapods.J. Exp. Biol. 213, 1490–1502.
Schilling, N., Hackert, R., 2006. Sagittal spine movements of small therian mammals during asymmetrical gaits. J. Exp. Biol. 209, 3925–3939.
Scholle, H.C., Schumann, N.P., Biedermann, F., Stegeman, D.F., Graßme, R., Roeleveld, K., Schilling, N., Fischer, M.S., 2001. Spatiotemporal surface EMG characteristics from rat triceps brachii muscle during treadmill locomotion indicate selective recruitment of functionally distinct muscle regions. Exp. Br. Res. 138, 26–36.
Slijper, E.J., 1942. Biologic-anatomical investigations on the bipedal gait and upright posture in mammals, with special reference to a little goat, born without forelegs. Proc. K. Ned. Akad. Wet. 45, 288–295.
Slijper, E.J., 1946. Comaprative biologic-anatomical investigation on the vertebral column and spinal musculature of mammals. Verh. K. Ned. Akad. Wet. Tweede Sectie 42, 1–128.
Stark, H., Fröber, R., Schilling, N., 2013. Intramuscular architecture of the autochthonous back muscles in humans. J. Anat. 222, 214–222.
Stark, H., Schilling, N., 2010. A novel method of studying fascicle architecture in relaxed and contracted muscles. J. Biomech. 43, 2897–2903.
van Eijden, T.M., Koolstra, J.H., Brugman, P., 1996. Three-dimensional structure of the human temporalis muscle. Anat. Rec. 246, 565–572.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Nyakatura, J.A., Stark, H. Aberrant back muscle function correlates with intramuscular architecture of dorsovertebral muscles in two-toed sloths. Mamm Biol 80, 114–121 (2015). https://doi.org/10.1016/j.mambio.2015.01.002
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1016/j.mambio.2015.01.002