Skip to main content

Advertisement

Log in

A test of the Resource’s and Bergmann’s rules in a widely distributed small carnivore from southern South America, Conepatus chinga (Molina, 1782) (Carnivora: Mephitidae)

  • Original Investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Bergmann’s rule is one of the most known biological rules and relates the body size variation to changes in latitude or temperature. Most recently, a “resource rule” had been presented, which explains several trends in body size, as a consequence of availability of resources. South American Conepatus chinga is one of the most widespread small carnivores in the Neotropics, being geographically distributed from Perú and Brazil to southern Argentina and Chile. This widely distributed species encounters a high environmental variability, which could affect body size and morphological variations. Here, I analyze geographical patterns of variation in body size and morphology estimated using a geometric morphometric approach from museum specimens. The associations between geographical patterns of variation in body size and morphometry and climatic and/or environmental variables were evaluated, using several databases and multiple regressions and redundancy analysis. Throughout the study, the presence of spatial autocorrelation was analyzed, and Spatial Eigenvector Mapping (SEVM) was used. The arid diagonal was identified as containing the smaller specimens of C. chinga, primarily related to net primary productivity (NPP). Bergmann’s rule seems not to be valid for this species. Instead, evidence seems to support the “resource rule” as the primarily explanation for body size variation. A lower amount of morphological variation was explained by NPP, mainly related to relative size variation of premolar and molars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abraham, E., del Valle, H.F., Roig, F., Torres, L, Ares, J.O., Coronato, F., Godagnone, R., 2009. Overview of the geography of the Monte Desert biome (Argentina). J. Arid Environ. 73, 144–153.

    Article  Google Scholar 

  • Akaike, H., 1973. Information theory as an extension of the Maximum Likelihood Principle. In: Petrov, B.N., Csaki, F. (Ed.), Second International Symposium on Information Theory. Akademiai Kiado, Budapest, pp. 267–281.

    Google Scholar 

  • Ashton, K.G., 2002. Do amphibians follow Bergmann’s rule? Can. J. Zool. 80,708-716.

    Article  Google Scholar 

  • Ashton, K.G., Tracy, M.C., de Queiroz, A., 2000. Is Bergmann’s rule valid for mammals? Am. Nat. 156, 390–415.

  • Bergmann, C, 1847. Ueber die Verhältnisse der Wärmeökonomie derThiere zu ihrer Grösse. Gottinger Studien 3, 595–708.

    Google Scholar 

  • Blackburn, T.M., Gaston, K.J., Loder, N., 1999. Geographic gradients in body size: a clarification of Bergmann’s rule. Divers. Distrib. 5, 165–174.

    Article  Google Scholar 

  • Blackburn, T.M., Hawkins, B.A., 2004. Bergmann’s rule and the mammal fauna of northern North America. Ecography 27, 715–724.

    Article  Google Scholar 

  • Bortolotto Peters, F., de Oliveira Roth, P.R., Christoff, A.U., 2011. Feeding habits of Molina’s hog-nosed skunk, Conepatus chinga (Carnivora: Mephitidae) in the extreme south of Brazil. Zoologia 28, 193–198.

    Article  Google Scholar 

  • Bruniard, E.D., 1982. La diagonal áridaargentina: un límiteclimático real. Rev. Geogr. 95, 5–20.

    Google Scholar 

  • Burkart, R., Bárbaro, N.O., Sánchez, R.O., Gómez, D.A., 1999. Eco-Regiones de la Argentina. Presidencia de la Nación, Secretaría de Recursos Naturales y Desar-rollo Sustentable. Programa Desarrollo Institucional Ambiental. Componente Política Ambiental, 43.

  • Burnham, K.P., Anderson, D.R., 2002. Model Selection and Multimodel Inference: A Practical Information—Theoretical Approach, 2nd ed. Springer, New York.

    Google Scholar 

  • Castillo, D.F., Lucherini, M., Luengos Vidal, E.M., Manfredi, C, Casanave, E.B., 2011. Spatial organization of Molina’s hog-nosed skunk (Conepatus chinga) in two landscapes of the Pampas grassland of Argentina. Can. J. Zool. 89, 229–238.

    Article  Google Scholar 

  • Chatterjee, S., Hadi, A.S., 2006. Analysis of Collinear Data, Regression Analysis by Example. John Wiley & Sons, pp. 221–258.

  • Cusens, J., Wright, S.D., McBride, P.D., Gillman, L.N., 2012. What is the form of the productivity-animal-species-richness relationship? A critical review and metaanalysis. Ecology 93, 2241–2252.

    Article  PubMed  Google Scholar 

  • Díaz, M.M., Lucherini, M., 2006. Orden Carnivora. In: Barquez, R.M., Díaz, M.M., Ojeda, R.A. (Ed.), Mamíferos de Argentina, Sistemáticay Distribución. Sociedad Argentina para el Estudio de los Mamíferos, Tucumán, pp. 89–107.

    Google Scholar 

  • Diniz-Filho,JAF., Bini, L.M., 2005. Modelling geographic patterns in species richness using eigenvector-based spatial filters. Glob. Ecol. Biogeogr. 14, 177–185.

    Article  Google Scholar 

  • Diniz-Filho,JAF., Rangel,T.F.LV.B., Bini, L.M., 2008. Model selection and information theory in geographical ecology. Glob. Ecol. Biogeogr. 17, 479–488.

    Article  Google Scholar 

  • Donadio, E., Di Martino, S., Aubone, M., Novaro, A.J., 2001. Activity patterns, home range, and habitat selection of the common hog-nosed skunk, Conepatus chinga (Mammalia, Mustelidae), in northwestern Patagonia. Mammalia 65, 49–54.

    Article  Google Scholar 

  • Donadio, E., Di Martino, S., Aubone, M., Novaro, A.J., 2004. Feeding ecology of the Andean hog-nosed skunk (Conepatus chinga) in areas under different land use in north-western Patagonia. J. Arid Environ. 56, 709–718.

    Article  Google Scholar 

  • Dormann, C.F., Elith, J., Bacher, S., Buchmann, C, Carl, G., Carré, G., García Mar-quéz, J.R., Gruber, B., Lafourcade, B., Leitão, P.J., Münkermüller, T., McClean, C, Osborne, P.E., Reineking, B., Schröder, B., Skidmore, A.K., Zurrell, D., Lautenbach, S., 2013. Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36, 27–46.

    Article  Google Scholar 

  • Dragoo, J.W., 2009. Family Mephitidae (skunks). In: Wilson, D.E., Mittermeier, R.A. (Ed.), Handbook of the Mammals of the World, 1 Carnivores. Lynx editions in association with Conservation International and IUCN, Barcelona, pp. 532–563.

    Google Scholar 

  • Eva, H.D., Belward, A.S., de Miranda, E.E., di Bella, CM., Gonds, V., Huber, O., Jones, S., Sgrenzaroli, M., Fritz, S., 2004. A land cover map of South America. Glob. Change Biol. 10, 731–744.

    Article  Google Scholar 

  • ESRI, 2002. Arcview Version3.3. Environmental System Research Institute, Redlands (CA).

  • Fernández, O.A., Busso, C.A., 1997. Arid and semi-arid rangelands: two thirds of Argentina. RALA Report 200, 41–60.

    Google Scholar 

  • Foley, J.A., Prentice, C, Ramankutty, N., Levis, S., Pollard, D., Sitch, S., Haxeltine, A., 1996. An integrated biosphere model of land surface processes, terrestrial carbon balance, and vegetation dynamics. Glob. Biogeochem. Cy. 10, 603–628.

    Article  CAS  Google Scholar 

  • Fuller, T.K., Johnson, W.E., Franklin, W.L., Johnson, K.A., 1987. Notes on the patago-nian hog-nosed skunk (Conepatus humboldtii) in southern Chile. J. Mammal. 68, 864–867.

    Article  Google Scholar 

  • Gardezi, T., daSilva, J., 1999. Diversity in relation to body size in mammals: a comparative study. Am. Nat. 153, 110–123.

    Article  PubMed  Google Scholar 

  • Garreaud, R.D., Vuille, M., Compagnucci, R., Marengo, J., 2009. Present-day South American climate. Palaeogeogr. Palaeoclimatol. Palaeoecol. 281, 180–195.

    Article  Google Scholar 

  • Gay, S.W., Best, T.L., 1996. Relationships between abiotic variables and geographic variation in skulls of pumas (Puma concolor: Mammalia, Felidae) in North and South America. Zool. J. Linn. Soc. 117, 259–282.

    Article  Google Scholar 

  • Geist, V., 1987. Bergmann’s rule is invalid. Can. J. Zool. 65, 1035–1038.

    Article  Google Scholar 

  • Graham, M., 2003. Confronting multicollinearity in ecological multiple regression. Ecology 84, 2809–2815.

    Article  Google Scholar 

  • Goodall, C, 1991. Procrustes methods in the statistical analysis of shape. J. R. Stat. Soc. 52, 285–339.

    Google Scholar 

  • Hijmans, R.J., Guarino, L., Mathur, P.Jarvis, A., Rojas, E., Cruz, M., Barrantes, I., 2005a. DIVA-GIS, Version 5., pp. 2.

  • Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G., Jarvis, A., 2005b. Very high resolution interpolated climate surfaces for global land areas. Int. J. Clim. 25, 1965–1978.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodríguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 83, 195–213.

    Article  Google Scholar 

  • Johnson, A., 2006. Biogeographical parallels between plants and ants in North American deserts (Hymenoptera: Formicidae; Spermatophyta). Myrmecol. Nachrichten. 8, 209–218.

    Google Scholar 

  • Johnson, J.B., Omland, K.S., 2004. Model selection in ecology and evolution. Trends Ecol. Evol. 19, 101–108.

    Article  PubMed  Google Scholar 

  • Kasper, C.B., Fontoura-Rodrigues, M.L., Cavalcanti, G.N., de Freitas, T.R.O., Rodrigues, F.H.G., de Oliveira, T.G., Eizirik, E., 2009. Recent advances in the knowledge of Molina’s Hog-nosed Skunk Conepatus chinga and Striped Hog-nosed Skunk C semistriatus in South America. Small Carnivore Conserv. 41, 25–28.

    Google Scholar 

  • Kasper, C.B., Soares, J.B.G., Freitas, T.R.O., 2012. Differential patterns of home range, net displacement and resting sites use of Conepatus chinga in southern Brazil. Mamm. Biol. 77, 358–362.

    Article  Google Scholar 

  • Klingenberg, C.P., 2011. MorphoJ: An integrated software package for geometric morphometrics. Mol. Ecol. Resour. 11, 353–357.

    Article  PubMed  Google Scholar 

  • Kucharik, C.J., Foley, J.A.,Delire,C, Fisher, V.A., Coe, M.T., Lenters, J.D., Young-Molling, C, Ramankutty, N., 2000. Testing the performance of a Dynamic Global Ecosystem Model: water balance, carbon balance, and vegetation structure. Glob. Biogeochem. Cy. 14, 795–825.

    Article  CAS  Google Scholar 

  • Kühn, I., Dormann, C.F., 2012. Less than eight (and a half) misconceptions of spatial analysis. J. Biogeogr. 39, 995–998.

    Article  Google Scholar 

  • Kullback, S., Leibler, R.A., 1951. On information and sufficiency. Ann. Math. Stat. 22, 79–86.

    Article  Google Scholar 

  • Lindstedt, S.L., Boyce, M.S., 1985. Seasonality, fasting endurance, and body size in mammals. Am. Nat. 125, 873–878.

    Article  Google Scholar 

  • Mancini, M.V., Paez, M.M., Prieto, A.R., Stutz, S., Tonello, M., Vilanova, I., 2005. Mid-Holocene climatic variability reconstruction from pollen records. Quat. Int. 132, 47–59.

    Article  Google Scholar 

  • McNab, B.K., 1971. On the ecological significance of Bergmann’s rule. Ecology 52, 845–854.

    Article  Google Scholar 

  • McNab, B.K., 1974. The energetic of endotherms. Ohio J. Sci. 74, 370–380.

    Google Scholar 

  • McNab, B.K., 2010. Geographic and temporal correlations of mammalian size reconsidered: a resource rule. Oecología 164, 13–23.

    Article  PubMed  Google Scholar 

  • Martínez, PA, Marti, DA, Molina, W.F., Bidau, C.J., 2013. Bergmann’s rule across the equator: a case study in Cerdocyon thous (Canidae). J. Anim. Ecol. 82, 997–1008.

    Article  PubMed  Google Scholar 

  • Medina, A.I., Marti, DA, Bidau, J.C., 2007. Subterranean rodents of the genus Ctenomys (Caviomorpha, Ctenomyidae) follow the converse to Bergmann’s rule. J. Biogeogr. 34, 1439–1454.

    Article  Google Scholar 

  • Medina, C.E., Díaz, C.V., Delgado, FA., Ynga, G.A., Zela, H.F., 2009. Dieta de Conepatus chinga (Carnivora: Mephitidae) en un bosque de Polylepis del departamento de Arequipa. Perú. Rev. Peru. Biol. 16, 183–186.

    Google Scholar 

  • Meiri, S., 2011. Bergmann’s rule - what’s in a name? Glob. Ecol. Biogeogr. 20, 203–207.

    Article  Google Scholar 

  • Meiri, S., Dayan,T., 2003. On the validity of Bergmann’s rule. J. Biogeogr. 30, 331–351.

    Article  Google Scholar 

  • Meiri, S., Dayan, T., Simberloff, D., 2004. Carnivores, biases and Bergmann’s rule. Biol. J. Linn. Soc. 81, 579–588.

    Article  Google Scholar 

  • Meiri, S., Yom-Tov, Y., Geffen, E., 2007. What determines conformity to Bergmann’s rule? Glob. Ecol. Biogeogr. 16, 788–794.

    Article  Google Scholar 

  • Morales, M.M., Giannini, N.P., 2010. Morphofunctional patterns in Neotropical felids: species co-existence and historical assembly. Biol. J. Linn. Soc. 100, 711–724.

    Article  Google Scholar 

  • Morello, JA, 1985. Grandes ecosistemas de Sudamérica, Textos para Discusión. Fun-dación Bariloche/3, Bariloche, pp. 116.

  • Naumann, M., Madariaga, M., 2003. Atlas Argentino/Argentinienatlas. Programa de Acción Nacional de Lucha contra la Desertificación, Secretaría de Ambiente y Desarrollo Sustentable. InstitutoNacionaldeTecnologíaAgropecuaria, Deutsche Gesekkschaft für Technische Zusammenarbeit, Buenos Aires, pp. 94.

  • Noy-Meir, I., 1974. Desert ecosystems: highertropic levels. Annu. Rev. Ecol. Syst. 5, 195–214.

    Article  Google Scholar 

  • Ochocinska, D., Taylor, J.R.E., 2003. Bergmann’s rule in shrews: geographical variation of body size in Paleartic Sorex species. Biol. J. Linn. Soc. 78, 365–381.

    Article  Google Scholar 

  • Olalla-Tárraga, M.A., Rodríguez, M.A., Hawkins, B.A., 2006. Broad-scale patterns of body size in squamate reptiles of Europe and North America. J. Biogeogr. 33, 781–793.

    Article  Google Scholar 

  • Olson, D.M., Dinerstein, E., Wikramanayake, E.D., Burgess, N.D., Powell, G.V.N., Underwood, E.C., D’Amico, JA, Itoua, I., Strand, H.E., Morrison, J.C., Loucks, C.J., Allnutt, T.F., Rikkets, H., Kura, Y., Lamoreux, J.F., Wettengel, W.W., Hedao, P., Kassem, K.R., 2001. Terrestrial ecoregions of the world: a new map of life on earth. BioScience 51, 933–938.

    Article  Google Scholar 

  • R Development Core Team, 2013. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

  • Rangel, T.F.L.V.B., Diniz-Filho,JAF., Bini, L.M., 2010. SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33, 1–5.

    Article  Google Scholar 

  • Redford, K.H., Eisenberg, J.F., 1992. Mammals ofthe Neotropics. Volume 2, The Southern Cone, Chile, Argentina, Uruguay, Paraguay. The University of Chicago Press, Chicago, pp. 430.

  • Reynolds, J.F., Kemp, P.R., Ogle, K., Fernández, R.J., 2004. Modifying the “pulse-reserve” paradigm for deserts of North America: precipitation pulses, soil water, and plant responses. Oecologia 141, 194–210.

    Article  PubMed  Google Scholar 

  • Rodríguez, MA, López-Sanudo, I.L., Hawkins, BA, 2006. The geographic distribution of mammal body size in Europe. Glob. Ecol. Biogeogr. 15, 173–181.

    Article  Google Scholar 

  • Roig-Junent, S., Flores, G., Claver, S., Debandi, G., Marvaldi, A., 2001. Monte desert (Argentina): insect biodiversity and natural areas. J. Arid Environ. 47, 77–94.

    Article  Google Scholar 

  • Rohlf, J.F., 1999. Shape statistics: Procrustes superimpositions and tangent spaces. J. Classif. 16, 197–223.

    Article  Google Scholar 

  • Rohlf, J.F., 2008a. TPSUtil, Version 1.40. Ecology and Evolution. SUNY, Stony Brook.

  • Rohlf, J.F., 2008b. TPSDig2, Version 2.12. Ecology and Evolution. SUNY, Stony Brook.

  • Ruggiero, A., Kitzberger, T., 2004. Environmental correlates of mammal species richness in South America: effects of spatial structure, taxonomy and geographic range. Ecography 27, 401–416.

    Article  Google Scholar 

  • Schiaffini, M.I., Gabrielli, M., Prevosti, F.J., Cardoso, Y.P., Castillo, D., Bo, R., Casanave, E., Lizarralde, M., 2013. Taxonomic status of southern South American Conepatus (Carnivora: Mephitidae). Zool. J. Linn. Soc. 167, 327–344.

    Article  Google Scholar 

  • Sheets, H.D., 2002. IMP-Integrated Morphometrics Package. Department of Physics, Canisius College, Buffalo, NY.

    Google Scholar 

  • Swihart, R.K., Slade, NA, Bergstrom, N.J., 1988. Relating body size to the rate of home range use in mammals. Ecology 69, 393–399.

    Article  Google Scholar 

  • ter Braak, C.J., Šmilauer, P., 2002. Canoco 4.5: Reference Manual and Canodraw for Windows, User’s Guide: Software from Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, New York.

    Google Scholar 

  • Travaini, A., Delibes, M., Ceballos, O., 1998. Summer foods of the Andean hog-nosed skunk (Conepatus chinga) in Patagonia. J. Zool. (Lond.) 246, 457–460.

    Article  Google Scholar 

  • Van Gelder, R.G., 1968. The genus Conepatus (Mammalia, Mustelidae): variation within a population. Am. Mus. Novit. 2322, 1–37.

    Google Scholar 

  • VanValkenburgh, B., 1989. Carnivore dental adaptations and diet: a study of trophic diversity withinguilds. In: Gittleman,J.D. (Ed.), Carnivore Behavior, Ecology, and Evolution. Springer, USA, pp. 410–435.

    Chapter  Google Scholar 

  • Van Valkenburgh, B., 2007. Déjà vu: the evolution of feeding morphologies in the Carnivora. Integr. Comp. Biol. 47, 147–163.

    Article  PubMed  Google Scholar 

  • Willmott, C.J., Matsuura, K., 2001. Terrestrial Water Budget Data Archive: Monthly Time Series (1959-1999). Center for Climate Research, University of Delaware, DE.

    Google Scholar 

  • Wozencraft, W.C., 2005. Order Carnivora. In: Wilson, D.E., Reeder, D.M. (Ed.), Mammal Species of the World. A Taxonomic and Geographic Reference, Volume 1. , third ed. The John Hopkins University Press, Baltimore, Maryland, pp. 601–624.

    Google Scholar 

  • Yom-Tov, Y., Geffen, E., 2006. Geographic variation in body size: the effect of ambient temperature and precipitation. Oecologia 148, 213–218.

    Article  PubMed  Google Scholar 

  • Zapata, S.C., Travaini, A., Martínez-Peck, R., 2001. Seasonal feeding habits of the Patagonian hog-nosed skunk Conepatus humboldtii in southern Patagonia. Acta Theriol. 46, 97–102.

    Google Scholar 

  • Zelditch, M.L., Swiderski, D.L., Sheets, H.D., Fink, W.L., 2004. Geometric Morphometrics for Biologist. A Primer. Elsevier Academic Press, San Diego, pp. 443.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro I. Schiaffini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schiaffini, M.I. A test of the Resource’s and Bergmann’s rules in a widely distributed small carnivore from southern South America, Conepatus chinga (Molina, 1782) (Carnivora: Mephitidae). Mamm Biol 81, 73–81 (2016). https://doi.org/10.1016/j.mambio.2014.11.007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2014.11.007

Keywords

Navigation