Skip to main content

Advertisement

Log in

The impact of phytoestrogens on sexual behavior and cognition in rodents

  • Review
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Phytoestrogens have the potential to influence the effects of other endocrine active-compounds by altering an individual’s reproductive development, sexual behaviors, and performance on cognitive tasks. Thus, the following literature review focuses on studies involving the effects that dietary phytoestrogens have on the reproductive behaviors and cognitive abilities of rodents. We found that the bulk of the literature that focused on the cognitive abilities and reproductive behavior of individuals exposed to dietary phytoestrogens does not provide a clear pattern of their effects. We suggest that the mixed results of many studies may be attributed to differences in the type of phytoestrogen administered, the length of time of its administration, the amount or phytoestrogen, the species tested, the sex and hormonal milieu of the subjects, if the exposure to phytoestrogens occurred during gestation, lactation, or adulthood, and if the subject is an herbivore or omnivore. Based on our review, we have provided information that is needed to formulate several testable hypotheses about the effects of phytoestrogens on sexual behaviors and cognitive abilities in rodent species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adeoya-Osiguwa, S.A., Markoulaki, S., Pocock, V., Milligan, S.R., Fraser, L.R., 2003. 17β-estradiol and environmental estrogens significantly affect mammalian sperm function. Hum. Reprod. 18,100–107.

    Article  CAS  PubMed  Google Scholar 

  • Adlercreutz, H., Fotsis, T., Bannwart, C., Wähälä, K., Mäkelä, T., Brunow, G., Hase, T., 1986. Determination of urinary lignans and phytoestrogen metabolites, potential antiestrogens and anticarcinogens, in urine of women on various habitual diets. J. Steroid Biochem. 25, 791–797.

    Article  CAS  PubMed  Google Scholar 

  • Adlercreutz, H., Honjo, H., Higashi, A., Fotsis, T., Hämäläinen, E., Hasegawa, T., Okada, H., 1991. Urinary excretion of lignans and isoflavonoid phytoestrogens in Japanese men and women consuming a traditional Japanese diet. Am. J. Clin. Nutr. 54, 1093–1100.

    Article  CAS  PubMed  Google Scholar 

  • Adlercreutz, H., Mazur, W., 1997. Phyto-oestrogens and western diseases. Ann. Med. 29, 95–120.

    Article  CAS  PubMed  Google Scholar 

  • Ball, E.R., Caniglia, M.K., Wilcox, J.L., Overton, K.A., Burr, M.J., Wolfe, B.D., Sanders, B.J., Wisniewski, A.B., Wrenn, C.C., 2010. Effects of genistein in the maternal diet on reproductive development and spatial learning in male rats. Horm. Behav. 57, 313–322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barha, C.K., Dalton, G.L., Galea, LA., 2010. Low doses of 17 apha-estradiol and 17 beta-estradiol facilitate, whereas higher doses of estrogen and 17 alpha- and 17 beta-estradiol impair, contextual fear conditioning in adult female rats. Neu-ropsycho pharmacology 35, 547–559.

    Article  CAS  Google Scholar 

  • Batzli, G.O., 1985. Nutrition. In: Tamarin, R.H. (Ed.), Biology of the New World Micro-tus. American Society of Mammalogists, Provo, UT, pp. 779–811.

  • Beach, F.A., 1976. Sexual attractivity, proceptivity, and receptivity in female mammals. Horm. Behav. 7, 105–138.

    Article  CAS  PubMed  Google Scholar 

  • Belcher, S.M., Zsarnovszky, A., 2001. Estrogenic actions in the brain: estrogen, phytoestrogens, and rapid intracellular signaling mechanisms. Pharmacol. Ther. 299, 408–414.

    CAS  Google Scholar 

  • Berteaux, D., Bêty, J., Rengifo, E., Bergeron, J., 1999. Multiple paternity in meadow voles (Microtus pennsylvanicus): investigating the role of the female. Behav. Ecol. Sociobiol. 45, 283–291.

    Article  Google Scholar 

  • Bhathena, S.J., Velasquez, M.T., 2002. Beneficial role of dietary phytoestrogens in obesity and diabetes. Am. J. Clin. Nutr. 79, 1191–1201.

    Article  Google Scholar 

  • Boettger-Tong, H., Murthy, L., Chiappetta, C., Kirkland, J.L, Goodwin, B., Adlercreutz, H., Stancel, G.M., Mäkelä, S., 1998. A case of a laboratory animal feed with high estrogenic activity and its impact on the in vivo responses to exogenously administered estrogens. Environ. Health Perspect. 106, 369–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boonstra, R., Xia, X., Pavone, L., 1993. Mating system of the meadow vole, Microtus pennsylvanicus. Behav. Ecol. 4, 83–89.

    Article  Google Scholar 

  • Brown, R.E., Macdonald, D.W. (Eds.), 1985. Social Odours in Mammals. Oxford University Press, Oxford, Great Britain.

    Google Scholar 

  • Brzezinski, A., Debi, A., 1999. Phytoestrogens: the natural selective estrogen receptor modulators? Eur. J. Obstet. Gynecol. Reprod. Biol. 85, 47–51.

    Article  CAS  Google Scholar 

  • Carreau, C., Flouriot, G., Bennetau-Pelissero, C., Potier, M., 2008. Enterodiol and enterolactone, two major diet-derived polyphenol metabolites have different impact on ERα transcriptional activation in human breast cancer cells. J. Steroid Biochem. Mol. Biol. 110, 176–185.

    Article  CAS  PubMed  Google Scholar 

  • Casanova, M., You, L., Gaido, K.W., Archibeque-Engle, S., Janszen, D.B., Heck, H.A., 1999. Developmental effects of dietary phytoestrogens in Sprague-Dawley rats and interactions of genistein and daidzein with rat estrogen receptors alpha and beta in vitro. Toxicol. Sci. 51, 236–244.

    Article  CAS  PubMed  Google Scholar 

  • Ciocca, D.R., Vargas Roig, L.M., 1995. Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocr. Rev. 16, 35–57.

    CAS  PubMed  Google Scholar 

  • Cornwell, T., Cohick, W., Raskin, I., 2004. Dietary phytoestrogens and health. Phyto-chemistry 65, 995–1016.

    CAS  Google Scholar 

  • Cos, P., De Bruyne, T., Apers, S., Berghe, D.V., Pieters, L., Vlietinck, A.J., 2003. Phytoestrogens: recent developments. Planta Med. 69, 589–599.

    Article  CAS  PubMed  Google Scholar 

  • Feder, H.H., 1981. Estrous cyclicity in mammals. In: Adler, N.T. (Ed.), Neuroen-docrinology of Reproduction, Physiology and Behavior. Plenum Press, New York, NY, pp. 279–348.

    Google Scholar 

  • Ferkin, M.H., 2011. Odor-related behavior and cognition in meadow voles, Microtus pennsylvanicus (Arvicolidae Rodentia). Folia Zool. 60, 262–276.

    Article  Google Scholar 

  • Ferkin, M.H., delBarco-Trillo, J., 2014. The behavior of female meadow voles, Microtus pennsylvanicus, during postpartum estrus and the responses of males to them. Mamm. Biol. 79, 81–89.

    Article  Google Scholar 

  • Ferkin, M.H., Zucker, I., 1991. Photoperiod and ovarian hormones control seasonal odour preferences of meadow voles, Microtus pennsylvanicus. J. Reprod. Fertil. 92, 433–441.

    Article  CAS  Google Scholar 

  • Ferkin, M.H., Gorman, M.R., Zucker, I., 1991. Ovarian hormones mediate the odors broadcasted by female meadow voles, Microtus pennsylvanicus. Horm. Behav. 25, 572–581.

    Article  CAS  PubMed  Google Scholar 

  • Fink, G., Sumner, B.E., Rosie, R., Grace, O., Quinn, J.P., 1996. Estrogen control of central neurotransmission: effect on mood, mental state, and memory. Cell. Mol. Neurobiol. 16, 325–344.

    Article  CAS  PubMed  Google Scholar 

  • Frye, C.A., Bayon, L.E., Pursnani, N.K., Purdy, R.H., 1998. The neurosteroids, progesterone and 3α, 5α-THP, enhance sexual motivation, receptivity, and proceptivity in female rats. Brain Res. 808, 72–78.

    Article  CAS  PubMed  Google Scholar 

  • Gehm, B.D., McAndrews, J.M., Chien, P., Jameson, J.L., 1997. Resveratrol, a polyphenolic compound found in grapes and wine, is an agonist for the estrogen receptor. Proc. Natl. Acad. Sci. 94, 14138–14143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Getz, L.L., 1985. Habitats. In: Tamarin, R.H. (Ed.), Biology of New World Microtus. American Society of Mammalogists, Provo, UT, pp. 286–309 (Special Publication No 8).

  • Gillies, G.E., McArthur, S., 2010. Estrogen actions in the brain and the basis for differential action in men and women: a case for sex-specific medicines. Pharmacol. Rev. 62, 155–198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazier, M.G., Bowman, M.A., 2001. A review of the evidence forthe use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch. Intern. Med. 161, 1161–1172.

    Article  CAS  PubMed  Google Scholar 

  • Grady, D., Wenger, N.K., Herrington, D., Khan, S., Furberg, C., Hunninghake, D., Vitt-inghoff, E., Hulley, S., 2000. Postmenopausal hormone therapy increases risk for venous thromboembolic disease: the heart and estrogen/progestin replacement study. Ann. Intern. Med 132, 689–696.

    Article  CAS  PubMed  Google Scholar 

  • Gupta, R., Gupta, L.K., Mediratta, P.K., Bhattacharya, S.K., 2012. Effect of resveratrol on scopolamine-induced cognitive impairment in mice. Pharmacol. Rep. 64, 438–444.

    Article  CAS  PubMed  Google Scholar 

  • Henry, L.A., Witt, D.M., 2002. Resveratrol: phytoestrogen effects on reproductive physiology and behavior in female rats. Horm. Behav. 41, 220–228.

    Article  CAS  PubMed  Google Scholar 

  • Irvine, C.H.G., Fitzpatrick, M.G., Alexander, S.L., 1998. Phytoestrogens in soy-based infant foods: concentrations, daily intake, and possible biological effects. Exp. Biol. Med. 217, 247–253.

    Article  CAS  Google Scholar 

  • Jacob, D.A., Temple, J.L., Patisaul, H.B., Young, L.J., Rissman, E.F., 2000. Coumestrol antagonizes neuroendocrine actions of estrogen via the estrogen receptor α. Exp. Biol. Med. 226, 301–306.

    Article  Google Scholar 

  • Janicki, S.C., Schupf, N., 2010. Hormonal influences on cognition and risk for Alzheimer disease. Curr. Neurol. Neurosci. Rep. 10, 359–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins, W.J., Becker, J.B., 2005. Sex. In: Wishaw, Q., Kolb, B. (Eds.), The Behavior of the Laboratory Rat: A Handbook with Tests. Oxford University Press, New York, NY, pp. 307–320.

    Chapter  Google Scholar 

  • Johnston, R.E., 1979. Olfactory preferences, scent marking, and proceptivity in female hamsters. Horm. Behav. 13, 21–39.

    Article  CAS  PubMed  Google Scholar 

  • Johnston, R.E., 2008. Individual odors and social communication: individual recognition, kin recognition, and scent over-marking. Adv. Study Behav. 38, 439–505.

    Article  Google Scholar 

  • Kim, D.H., Jung, HA, Park, S.J., Kim, J.M., Lee, S., Choi, J.S., Cheong, J.H., Ko, K.H., Ryu, J.H., 2010. The effects of daidzin and its aglycon, daidzein, on the scopolamine-induced memory impairment in male mice. Arch. Pharm. Res. 33, 1685–1690.

    Article  CAS  PubMed  Google Scholar 

  • Kitts, W.D., Newsome, F.E., Runeckles, V.C., 1983. The estrogenic and antiestrogenic effects of coumestrol and zearalanol on the immature rat uterus. Can. J. Anim. Sci. 63, 823–834.

    Article  CAS  Google Scholar 

  • Knight, D.C., Eden, J.A., 1995. Phytoestrogens—a short review. Maturitas 22, 167–175.

    Article  CAS  PubMed  Google Scholar 

  • Kohara, Y., Kuwahara, R., Kawaguchi, S., Jojima, T., Yamashita, K., 2014. Perinatal exposure to genistein, a soy phytoestrogen, improves spatial learning and memory but impairs passive avoidance learning and memory in offspring. Physiol. Behav. 130, 40–46.

    Article  CAS  PubMed  Google Scholar 

  • Kouki, T., Kishitake, M., Okamoto, M., Oosuka, I., Takebe, M., Yamanouchi, K., 2003. Effects of neonatal treatment with phytoestrogens, genistein and daidzein, on sex difference in female rat brain function: estrous cycle and lordosis. Horm. Behav. 44, 140–145.

    Article  CAS  PubMed  Google Scholar 

  • Kuiper, G.G., Lemmen, J.G., Carlsson, B., Corton, J.C., Safe, S.H., van der Saaq, P.T., van der Burg, B., Gustafsson, J.A., 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252–4263.

    Article  CAS  PubMed  Google Scholar 

  • Kurzer, M.S., Xu, X., 1997. Dietary phytoestrogens. Annu. Rev. Nutr. 17, 353–381.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.B., Lee, H.J., Sohn, H.S., 2005. Soy isoflavones and cognitive function. J. Nutr. Biochem. 16, 641–649.

    Article  CAS  PubMed  Google Scholar 

  • Lee, Y.B., Lee, H.J., Won, M.H., Hwang, I.K., Kang, T.C., Lee, J.Y., Nam, S.Y., Kim, K.S., Kim, E., Cheon, S.H., Sohn, H.S., 2004. Soy isoflavones improve spatial delayed matching-to-place performance and reduced cholinergic neuron loss in elderly males. J. Nutr. 134, 1827–1831.

    Article  CAS  PubMed  Google Scholar 

  • Lephart, E.D., Setchell, K.D., Had, R.J., Lund, T.D., 2004. Behavioral effects of endocrine-disrupting substances: phytoestrogens. ILAR 45, 443–454.

    Article  CAS  Google Scholar 

  • Lephart, E.D., West, T.W., Weber, K.S., Rhees, R.W., Setchell, K.D.R., Adlercreutz, H., Lund, T.D., 2002. Neurobehavioral effects of dietary soy phytoestrogens. Neuro-toxicol. Teratol. 24, 5–16.

    Article  CAS  Google Scholar 

  • Lewis, R.W., Brooks, N., Milburn, G.M., Soames, A., Stone, S., Hall, M., Ashby, J., 2003. The effects of the phytoestrogen genistein on the postnatal development of the rat. Toxicol. Sci. 71, 74–83.

    Article  CAS  PubMed  Google Scholar 

  • Li, J., Wang, G., Liu, J., Zhou, L., Dong, M., Wang, R., Li, X., Li, X., Lin, C., Niu, Y., 2010. Puerarin attenuates amyloid-beta-induced cognitive impairment through suppression of apoptosis in rat hippocampus in vivo. Eur. J. Pharmacol. 649, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Luine, V., Attalla, S., Mohan, G., Costa, A., Frankfurt, M., 2006. Dietary phytoestrogens enhance spatial memory and spine density in the hippocampus and prefrontal cortex of ovariectomized rats. Brain Res. 1126, 183–187.

    Article  CAS  PubMed  Google Scholar 

  • Lund, T.D., West, T.W., Tian, L.Y., Bu, L.H., Simmons, D.L., Setchell, K.D.R., Adlercreutz, H., Lephart, E.D., 2001. Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens. BMC Neurosci. 2, 20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore, T.O., Karom, M., O’Farrell, L., 2004. The neurobehavioral effects of phytoestrogens in male Syrian hamsters. Brain Res. 1016, 102–110.

    Article  CAS  PubMed  Google Scholar 

  • Morito, K., Hirose, T., Kinjo, J., Hirakawa, T., Okawa, M., Nohara, T., Ogawa, S., Inoue, S., Muramatsu, M., Masamune, Y., 2001. Interaction of phytoestrogens with estrogen receptors alpha and beta. Biol. Pharm. Bull. 24, 351–356.

    Article  CAS  PubMed  Google Scholar 

  • Mueller, S.O., Simon, S., Chae, K., Metzler, M., Korach, K.S., 2004. Phytoestrogens and their human metabolites show distinct agonistic and antagonistic properties on estrogen receptor α (ERα) and ERβ in human cells. Toxicol. Sci. 80, 14–25.

    Article  CAS  PubMed  Google Scholar 

  • Murkies, A.L., Wilcox, G., Davis, S.R., 1998. Phytoestrogens. J. Clin. Endocrinol. Metabol. 83, 297–303.

    CAS  Google Scholar 

  • Murkies, A., Lombard, C., Strauss, B., Wilcox, G., Burger, H., Morton, M., 1995. Dietary flour supplementation decreases post-menopausal hot flushes: effect of soy and wheat. Maturitas 21, 189–195.

    Article  CAS  PubMed  Google Scholar 

  • Neese, S.L., Bandara, S.B., Doerge, D.R., Helferich, W.G., Korol, D.L., Schantz, S.L., 2012. Effetcs of multiple daily genistein treatments on delayed alternation and a differential reinforcement of low rats of responding task in middle-aged rats. Neurotoxicol. Teratol. 34, 187–195.

    Article  CAS  PubMed  Google Scholar 

  • Neese, S.L., Wang, V.C., Doerge, D.R., Woodling, K.A., Andrade, J.E., Helferich, W.G., Korol, D.L., Schantz, S.L., 2010. Impact of dietary genistein and aging on executive function in rats. Neurotoxicol. Teratol. 32, 200–211.

    Article  CAS  PubMed  Google Scholar 

  • Newsome, F.E., Kitts, W.D., 1980. The effects of feeding coumestrol on the reproductive organs of prepubertal lambs. Can. J. Anim. Sci. 60, 53–58.

    Article  CAS  Google Scholar 

  • Odum, J., Tinwell, H., Jones, K., Van Miller, J.P., Joiner, R.L., Tobin, G., Kawasaki, H., Deghenghi, R., Ashby, J., 2001. Effect of rodent diets on the sexual development of the rat. Toxicol. Sci. 61, 115–127.

    Article  CAS  PubMed  Google Scholar 

  • Pan, M., Li, z., Yeung, V., Xu, R., 2010. Dietary supplementation of soy germ phytoestrogens or estradiol improves spatial memory performance and increases gene expression of BDNF, TrkB receptor and synaptic factors in ovariectomized rats. Nutr. Metabol. 7, 75–83.

    Article  CAS  Google Scholar 

  • Patisaul, H.B., Jefferson, W., 2010. The pros and cons of phytoestrogens. Front. Neu-roendocrinol. 31, 400–419.

    CAS  Google Scholar 

  • Patisaul, H.B., Whitten, P.L., 2005. Dietary phytoestrogens. In: Naz, R.K. (Ed.), Endocrine Disruptors: Effects on Male and Female Reproductive Systems. CRC Press, Boca Raton, FL, pp. 389–423.

    Google Scholar 

  • Patisaul, H.B., Luskin, J.R., Wilson, M.E., 2003. A soy supplement and tamoxifen inhibit sexual behavior in female rats. Horm. Behav. 45, 270–277.

    Article  CAS  Google Scholar 

  • Patisaul, H.B., Whitten, P.L., Young, L.J., 1999. Regulation of estrogen receptor beta mRNA in the brain: opposite effects of 17β-estradiol and the phytoestrogen, coumestrol. Mol. Brain Res. 67, 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Pelletier, G., El-Alfy, M., 2000. Immunocytochemical localization of estrogen receptors α and β in the human reproductive organs. J. Clin. Endocrin. Metabol. 85, 4835–4840.

    CAS  Google Scholar 

  • Peet, D., 2009. Menopause and HRT. InnovAiT 2, 10–16.

    Article  Google Scholar 

  • Pierce, J.T., Nuttall, D.L., 1961. Self-paced sexual behavior in the female rat. J. Comp. Physiol. Psychol. 54, 310–313.

    Article  Google Scholar 

  • Rich, T.J., Hurst, J.L., 1998. Scent marks as reliable signals of the competitive ability of mates. Anim. Behav. 56, 727–735.

    Article  CAS  PubMed  Google Scholar 

  • Rich, T.J., Hurst, J.L., 1999. The competing countermarks hypothesis: reliable assessment of competitive ability by potential mates. Anim. Behav 58, 1027–1037.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, S.C., 2007. Scent marking. In: Wolff, J.O., Sherman, P.W. (Eds.), Rodent Societies: An Ecological and Evolutionary Perspective. Chicago University Press, Chicago, IL, pp. 255–267.

  • Rissman, E.F., Wersinger, S.R., Taylor, J.A., Lubahn, D.B., 1997. Estrogen-receptor function as revealed by knockout studies: neuroendocrine and behavioral aspects. Horm. Behav. 31, 232–243.

    Article  CAS  PubMed  Google Scholar 

  • Santell, R.C., Chang, Y.C., Nair, M.G., Helferich, W.G., 1997. Dietary genistein exerts estrogenic effects upon the uterus, mammary gland and the hypotha-lamic/pituitary axis in rats. J. Nutr. 127, 263–269.

    Article  CAS  PubMed  Google Scholar 

  • Schantz, S.L., Widholm, J.J., 2001. Cognitive effects of endocrine-disrupting chemicals in animals. Environ. Health Perspect. 109, 1197–1206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scharbo-Dehaan, M., 1996. Hormone replacement therapy. Nurse Pract. 21, 1–13.

    Article  CAS  PubMed  Google Scholar 

  • Setchell, K.D.R., 1998. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 68, 1333S–1346S.

    Article  Google Scholar 

  • Setchell, K.D., Brown, N.M., Lydeking-Olsen, E., 2002. The clinical importance of the metabolite equol-a clue to the effectiveness of soy and its isoflavones. J. Nutr. 132, 3577–3584.

    Article  CAS  PubMed  Google Scholar 

  • Stopka, P., MacDonald, D.W., 1998. Signal interchange during mating in the wood mouse (Apodemus sylvaticus): the concept of active and passive signaling. Behaviour 135, 231–249.

    Article  Google Scholar 

  • Thigpen, J.E., Haseman, J.K., Saunders, H.E., Setchell, K.D.R., Grant, M.G., Forsythe, D.B., 2003. Dietary phytoestrogens accelerate the time of vaginal opening in immature CD-1 mice. Comp. Med. 53, 607–615.

    CAS  PubMed  Google Scholar 

  • Thom, M.D., Hurst, J.L., 2004. Individual recognition by scent. Ann. Zool. Fenn. 41, 765–787.

    Google Scholar 

  • Tou, J.C.L., Chen, J., Thompson, L.U., 1998. Flaxseed and its lignan precursor, secoisolariciresinol diglycoside, affect pregnancy outcome and reproductive development in rats. J. Nutr. 128, 1861–1868.

    Article  CAS  PubMed  Google Scholar 

  • Whitten, P.L., Naftolin, F., 1992. Effects of a phytoestrogen diet on estrogen-dependent reproductive processes in immature female rats. Steroids 57, 56–61.

    Article  CAS  PubMed  Google Scholar 

  • Whitten, P.L., Lewis, C., Russell, E., Naftolin, F., 1995. Potential adverse effects of phytoestrogens. J. Nutr. 125, 771S–776S.

    Google Scholar 

  • Wiseman, H., 2000. The therapeutic potential of phytoestrogens. Expert Opin. Invest. Drugs 9, 1829–1840.

    Article  CAS  Google Scholar 

  • Wisniewski, A.B., Cernetich, A., Gearhart, J.P., Klein, S.L., 2005. Perinatal exposure to genistein alters reproductive development and aggressive behavior in male mice. Physiol. Behav. 84, 327–334.

    Article  CAS  PubMed  Google Scholar 

  • Wisniewski, A.B., Klein, S.L., Lakshmanan, Y., Gearhart, J.P., 2003. Exposure to genistein during gestation and lactation demasculinizes the reproductive system in rats. J. Urol. 169, 1582–1586.

    Article  CAS  PubMed  Google Scholar 

  • Wrenn, C.C., 2013. Dietary isoflavones and learning and memory. In: Preedy, V.R. (Ed.), Isoflavones: Chemistry, Analysis, Function and Effects. R. Soc. Chem., Cambridge, pp. 451–464.

  • Wyatt, T.D., 2014. Pheromones and Animal Behavior. Chemical Signals and Signatures, second ed. Cambridge.

  • You, L., Casanova, M., Bartolucci, J., Fryczynski, M.W., Dorman, D.C., Everitt, J.I., Gaido, K.W., Ross, S.M., Heck, H.D., 2002. Combined effects of dietary phytoestrogen and synthetic endocrine-active compound on reproductive development in Sprague-Dawley rats: genistein and methoxychlor. Toxicol. Sci. 66, 91–104.

    Article  CAS  PubMed  Google Scholar 

  • Zanoli, P., Zavatti, M., Geminiani, E., Corsi, L., Baraldi, M., 2009. The phytoestrogen ferutinin affects female sexual behavior modulating ERα expression in the hypothalamus. Behav. Brain Res. 199, 283–287.

    Article  CAS  PubMed  Google Scholar 

  • Zavatti, M., Montanari, C., Zanoli, P., 2006. Role of ferutinin in the impairment of female sexual function induced by Ferula hermonis. Physiol. Behav. 89, 656–661.

    CAS  Google Scholar 

  • Zavatti, M., Benelli, A., Montanari, C., Zanoli, P., 2009. The phytoestrogen ferutinin improves sexual behavior in ovariectomized rats. Phytomedicine 16, 547–554.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler, R.G., 2004. Phytoestrogens and breast cancer. Am. J. Clin. Nutr. 79, 183–184.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael H. Ferkin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pierson, L.M., Ferkin, M.H. The impact of phytoestrogens on sexual behavior and cognition in rodents. Mamm Biol 80, 148–154 (2015). https://doi.org/10.1016/j.mambio.2014.11.006

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2014.11.006

Keywords

Navigation