Skip to main content
Log in

Dramatic increases in number of cerebellar granule-cell-Purkinje-cell synapses across several mammals

  • Original Investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

The classical comparative literature on mammalian brain evolution has mainly focused on brain mass measurements because larger brains are more likely to have more neurons to process information. The phylogenetic expansion in the mass of the cerebellum is as significant as that of the cerebral cortex. The synapse, however, has recently been recognized as the basic unit of neuronal information processing, including neuroplasticity. Here we hypothesize significant absolute and relative increases in the functionally important granule-cell-Purkinje-cell (gcPc) synapses as a salient feature of the evolving cerebellum. To probe evolutionary constraints, we define the gcPc circuitry with ten degrees of freedom, including number of granule cells, Purkinje cells, lengths of the granule cell axonal segments, linear densities of synapses along them, and physical dimensions of Purkinje as well as granule cell dendritic structures. We show that although only two of the ten parameters are not constrained and therefore can exhibit independent, comparative changes, there is a dramatic increase in the number of gcPc synapses from the rodent to the human cerebellum. By assigning a value of unity for the mouse, the ratio of the number of gcPc synapses from mouse, rat, cat, non-human primate, and human is 1:5.5:236:620:20,000, which greatly exceeds the ratio of increase in cerebellar mass (1:6:48:180:3000). Dramatic changes in the number of gcPc synapses can therefore occur despite evolutionary constraints and only modest changes in parameters of the neuronal circuitry. Increases in the number of gcPc synapses have important functional consequences as these synapses enhance the capacity of the cerebellum to code and process information, which directly impact memory and learning in both motor and non-motor tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andersen, B.B., Korbo, L., Pakkenberg, B., 1992. A quantitative study of the human cerebellum with unbiased stereological techniques. J. Comp. Neurol. 326, 549–560.

    Article  CAS  PubMed  Google Scholar 

  • Andersen, B.B., Gundersen, H.J., Pakkenberg, B., 2003. Aging of the human cerebellum: a stereological study. J. Comp. Neurol. 466, 356–365.

    Article  PubMed  Google Scholar 

  • Attwell, P.J., Ivarsson, M., Millar, L., Yeo, C.H., 2002. Cerebellar mechanisms in eye-blink conditioning. Ann. N.Y. Acad. Sci. 978, 79–92.

    Article  CAS  PubMed  Google Scholar 

  • Apps, R., Garwicz, M., 2005. Anatomical and physiological foundations of cerebellar information processing. Nat. Rev. Neurosci. 6, 297–311.

    Article  CAS  PubMed  Google Scholar 

  • Bedi, K.S., Hall, R., Davies, C.A., Dobbing, J., 1980. A stereological analysis of the cerebellar granule and Purkinje cells of 30-day-old and adult rats undernourished during early postnatal life. J. Comp. Neurol. 193, 863–870.

    Article  CAS  PubMed  Google Scholar 

  • Barmack, N.H., Yakhnitsa, V., 2011. Microlesions of the inferior olive reduce vestibular modulation of Purkinje cell complex and simple spikes in mouse cerebellum. J. Neurosci. 31, 9824–9835.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brand, S., Dahl, A.L., Mugnaini, E., 1976. The length of parallel fibers in the cat cerebellar cortex. An experimental light and electron microscopic study. Exp. Brain Res. 26, 39–58.

    CAS  PubMed  Google Scholar 

  • Chklovskii, D.B., Mel, B.W., Svoboda, K., 2004. Cortical rewiring and information storage. Nature 431, 782–788.

    Article  CAS  PubMed  Google Scholar 

  • Clark, D.A., Mitra, P.P., Wang, S.S., 2001. Scalable architecture in mammalian brains. Nature 411, 189–193.

    Article  CAS  PubMed  Google Scholar 

  • DeFelipe, J., 2011. The evolution of the brain, the human nature of cortical circuits, and intellectual creativity. Front. Neuroanat. 5, 29, https://doi.org/10.3389/fnana.2011.00029 (published 16 May 2011).

  • De Zeeuw, C.I., Yeo, C.H., 2005. Time and tide in cerebellar formation. Curr. Opin. Neurobiol. 15, 667–674.

    Article  PubMed  CAS  Google Scholar 

  • Fan, H., Favero, M., Vogel, M.W., 2001. Elimination of Bax expression in mice increases cerebellar Purkinje cell numbers but not the number of granule cells. J. Comp. Neurol. 436, 82–91.

    Article  CAS  PubMed  Google Scholar 

  • Fox, C.A., Barnard, J.W., 1957. A quantitative study of the Purkinje cell dendritic branchlets and their relationship to afferent fibers. J. Anat.(London) 91, 299–313.

    CAS  Google Scholar 

  • Gottlieb, G., 1984. Evolutionary trends and evolutionary origins: relevance to theory in comparative psychology. Psychol. Rev. 91, 448–456.

    Article  CAS  PubMed  Google Scholar 

  • Gundappa-Sulur, G., De Schutter, E., Bower, J.M., 1999. Ascending granule cell axon: an important component of the cerebellar cortical circuitry. J. Comp. Neurol. 408, 580–596.

    Article  CAS  PubMed  Google Scholar 

  • Hansel, C., Linden, D.F., D’Angelo, E., 2001. Beyond parallel fiber LTD: the diversity of synaptic and non-synaptic plasticity in the cerebellum. Nat. Neurosci. 4, 407–475.

    Article  Google Scholar 

  • Harris, K.M., Stevens, J.K., 1988. Dendritic spine of rat cerebellar Purkinje cells: serial electron microscopy with reference to their biophysical characteristics. J. Neurosci. 8, 4455–4469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey, R.J., Napper, R.M.A., 1988. Quantitative study of granule and Purkinje cells in the cerebellar cortex of the rat. J. Comp. Neurol. 274, 151–157.

    Article  CAS  PubMed  Google Scholar 

  • Herculano-Houzel, S., 2009. The human brain in numbers: a linearly scaled-up primate brain. Front. Hum. Neurosci. 3, 31, https://doi.org/10.3389/neuro.09.031.2009.

  • Herculano-Houzel, S., 2010. Coordinated scaling of cortical and cerebellar numbers of neurons. Front. Neuroanat. 4, 1–8 (art 12).

  • Herculano-Houzel, S., 2011. Not all brains are made the same: new views on brain scaling in evolution. Brain Behav. Evol. 78, 22–36.

    Article  PubMed  Google Scholar 

  • Herculano-Houzel, S., Mota, B., Lent, R., 2006. Cellular scaling rules for rodent brains. Proc. Natl. Acad. Sci. U.S.A. 103, 12138–12143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, C., Brown, N., Huang, R., 1999. Age-related changes in the cerebellum: parallel fibers. Brain Res. 840, 148–152.

    Article  CAS  PubMed  Google Scholar 

  • Huang, C., Wang, L., Huang, R., 2006a. Cerebellar granule cell: ascending axon and parallel fiber. Eur. J. Neurosci. 23, 1731–1737.

    Article  PubMed  Google Scholar 

  • Huang, C., 2008. Implications on cerebellar function from information coding. Cerebellum 7, 314–331.

    Article  PubMed  Google Scholar 

  • Huang, C., Miyamoto, H., Huang, R., 2006b. The mouse cerebellum from one to thirty-four months: parallel fibers. Neurobiol. Aging 27, 1715–1718.

    Article  PubMed  Google Scholar 

  • Ito, M., 1984. The Cerebellum and Neural Control. Raven Press, New York.

    Google Scholar 

  • Ito, M., 2006. Cerebellar circuitry as a neuronal machine. Prog. Neurobiol. 78, 272–303.

    Article  PubMed  Google Scholar 

  • Jorntell, H., Hansel, C., 2006. Synaptic memories upside down: bidirectional plasticity at cerebellar parallel fiber-Purkinje cell synapses. Neuron 52, 227–238.

    Article  PubMed  CAS  Google Scholar 

  • Lange, W., 1975. Cell number and cell density in the cerebellar cortex of man and some other mammals. Cell Tissue Res. 157, 115–124.

    Article  CAS  PubMed  Google Scholar 

  • Llinas, R. (Ed.), 1969. Neurobiology of Cerebellar Evolution and Development. Amer. Med. Assoc, Chicago.

  • Mayhew, T.M., 1991. Accurate prediction of Purkinje cell number from cerebellar weight can be achieved with the fractionator. J. Comp. Neurol. 308, 162–168.

    Article  CAS  PubMed  Google Scholar 

  • Manto, M., Gruol, D., Schmahmann, J., Koibuchi, N., Rossi, F. (Eds.), 2012. Handbook of the Cerebellum and Cerebellar Disorders. Springer, New York.

  • Napper, R.M.A., Harvey, R.J., 1988a. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol. 274, 168–177.

    Article  CAS  PubMed  Google Scholar 

  • Napper, R.M.A., Harvey, R.J., 1988b. Quantitative study of the Purkinje cell dendritic spines inthe rat cerebellum. J. Comp. Neurol. 274, 158–167.

    Article  CAS  PubMed  Google Scholar 

  • Palay, S.L., Palay, V., 1974. The Cerebellar Cortex: Cytology and Organization. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Palkovitz, M., Mezey, E., Hamori, J., Szentagothai, J., 1971a. Quantitative histological analysis of the cerebellar nucleus in the cat. I. Numerical data on cells and on synapses. Exp. Brain Res. 28, 189–209.

    Google Scholar 

  • Palkovitz, M., Magyar, P., Szentagothai, J., 1971b. Quantitative histological analysis of the cerebellar cortex in the cat. II. Cell numbers and densities in the granular layer. Brain Res. 32, 15–30.

    Google Scholar 

  • Palkovitz, M., Magyar, P., Szentagothai, J., 1971c. Quantitative histological analysis of the cerebellar cortex in the cat. III. Structural organization of the molecular layer. Brain Res. 34, 1–18.

    Google Scholar 

  • Pichitpornchai, C., Rawson, J.A., Rees, S., 1994. Morphology of parallel fibers inthe cerebellar cortex of the rat: an experimental light and electron microscopic study with biocytin. J. Comp. Neurol. 342, 206–220.

    Article  CAS  PubMed  Google Scholar 

  • Portmann, A., 1947. Etudes sur la cerebralisation chez les oiseauz: II Les indices intra-cerebraux. Atauda 15, 161–171.

    Google Scholar 

  • Rockel, A.J., Hiorns, R.W., Powell, T.P., 1980. The basic uniformity in structure of the neocortex. Brain 103, 221–244.

    Article  CAS  PubMed  Google Scholar 

  • Shepherd, G.M.G., Raastad, M., Andersen, P., 2002. General and variable features of varicosity spacing along unmyelinated axons in the hippocampus and cerebellum. Proc. Natl. Acad. Sci. U.S.A. 99, 6340–6345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Smoljaninov, V.V., 1966. Structural-functional models of certain biological system. In: Gelfand, I.M., Gurfinkel, V.S., Fomin, S.V., Cetlin, M.L. (Eds.), Several Characteristics in the Organization of the Cerebellum. Izdatelstvo Nauka, Moscow, pp. 203–267 (in Russian).

  • Stephan, H., Frahm, H., Baron, G., 1981. New and revised data on volumes of brain structures in insectivores and primates. Folia Primatol. 35, 1–29.

    Article  CAS  Google Scholar 

  • Strick, P.L., Dum, R.P., Fiez, J.A., 2009. Cerebellum and nonmotor function. Ann. Rev. Neurosci. 32, 413–434.

    Article  CAS  PubMed  Google Scholar 

  • Sturrock, R.R., 1989. Changes in neuron number in the cerebellar cortex of the aging mouse. J. Hirnforsch. 30, 499–503.

    CAS  PubMed  Google Scholar 

  • Sultan, F., 2002. Analysis of mammalian brain architecture. Nature 415, 133–134.

    Article  CAS  PubMed  Google Scholar 

  • Thomson, R.F., Bao, S., Chen, L., Cipriano, B.D., Grethe, J.S., Kim, J.J., Thompson, J.K., Tracy, J.A., Weninger, M.S., Krupa, D.J., 1997. Associate Learning. In: Schmahmann, J.D. (Ed.), The Cerebellum and Cognition. Academic Press, New York.

    Google Scholar 

  • Woodruff-Pak, D.S., 2006. Stereological estimation of Purkinje neuron number in C57BL/6 mice and its relation to associative learning. Neuroscience 141, 233–243.

    Article  CAS  PubMed  Google Scholar 

  • Xu-Friedman, M.A., Harris, K.M., Regehr, W.G., 2001. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21, 6666–6680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yopak, K.E., Lisney, T.J., Darlington, R.B., Collin, S.P., Montgomery, J.C., Finlay, B.L., 2010. A conserved pattern of brain scaling from sharks to primates. Proc. Natl. Acad. Sci. U.S.A. 107, 12946–12951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chiming Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Gammon, S.J., Dieterle, M. et al. Dramatic increases in number of cerebellar granule-cell-Purkinje-cell synapses across several mammals. Mamm Biol 79, 163–169 (2014). https://doi.org/10.1016/j.mambio.2013.12.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2013.12.003

Keywords

Navigation