Skip to main content

Advertisement

Log in

Evaluating ex situ conservation projects: Genetic structure of the captive population of the Arabian sand cat

  • Short Communication
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Ex situ conservation plays an increasingly important role in the conservation of endangered species. Molecular genetic markers can be helpful to assess the status of captive breeding programmes. We present the first molecular genetic analysis of the captive population of the Arabian sand cat (Felis margarita harrisoni) using microsatellites. Our data indicates that the captive population of F. m. harrisoni comprises three genetic clusters, which are based on different founder lineages. Genetic diversity was relatively high, the effective population size even exceeded the number of founders. This was presumably caused by subsequently integrating unrelated, genetically diverse founders into the captive population and a careful management based on minimizing kinship. However, we detected an error in the studbook records, which might have led to incestuous matings and underlines the usefulness of molecular evaluations in captive breeding programmes for endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akers K., 2009. International studbook for the sand cat (Felis margarita), in: International Studbook.

  • Ballou, J.D., Lacy, R.C., 1995. Identifying genetically important individuals for management of genetic diversity in pedigreed populations. In: Ballou, J.D., Gilpin, M., Foose, T.J. (Eds.), Population Management forSurvival & Recovery. Analytical Methods and Strategies in Small Population Conservation. Columbia University Press, New York, pp. 76–111.

    Google Scholar 

  • Ballou, J.D., Lees, C, Faust, L.J., Long, S., Lynch, C, Lackey, L.B., Foose, T.J., 2010. Demographic and genetic management of captive populations. In: Kleiman, D.G., Thompson, K.V., Kirk Baer, C. (Eds.), Wild Mammals in Captivity: Principles and Techniques for Zoo Management. The University of Chicago Press, London, pp. 219–252.

    Google Scholar 

  • Beebee, T.J.C., 2009. A comparison of single-sample effective size estimators using empirical toad (Bufo calamita) population data: genetic compensation and population size-genetic diversity correlations, Mol. Ecol. 18, 4790–4797.

    Article  CAS  PubMed  Google Scholar 

  • Bowling, A.T., Zimmermann, W., Ryder, O., Penado, C, Peto, S., Chemnick, L., Yasinet-skaya, N., Zharkikh, T., 2003. Genetic variation in Przewalski’s horses, with special focus on the last wild caught mare, 231 Orlitza III, Cytogenet. Genome Res. 102, 226–234.

    Article  CAS  PubMed  Google Scholar 

  • Caballero, A., Toro, M.A., 2000. Interrelations between effective population size and other pedigree tools for the management of conserved populations, Genet. Res. 75, 331–343.

    Article  CAS  PubMed  Google Scholar 

  • Campana, M.G., Hunt, H.V., Jones, H., White, J., 2010. CorrSieve: software for summarizing and evaluating structure output. Mol. Ecol. Resour.

  • Clegg, P., 2011. Reading the tea-leaves: zoos and their future role in conservation, Int. Zoo News 58, 93–103.

    Google Scholar 

  • Cornuet, J.M., Luikart, G., 1996. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data, Genetics 144, 2001–2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  • England, P.R., Cornuet, J.M., Berthier, P., Tallmon, D.A., Luikart, G., 2006. Estimating effective population size from linkage disequilibrium: severe bias in small samples, Conserv. Genet. 7, 303–308.

    Article  Google Scholar 

  • Estoup, A., Largiader, C.R., Perrot, E., Chourrout, D., 1996. Rapid one-tube DNA extraction for reliable PCR detection of fish polymorphic markers and transgenes, Mol. Mar. Biol. Biotechnol. 5, 295–298.

    CAS  Google Scholar 

  • Evanno, G., Regnaut, S., Goudet, J., 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Mol. Ecol. 14, 2611–2620.

    Article  CAS  PubMed  Google Scholar 

  • Falconer, D.S., Mackay, T.F.C., 1996. Introduction to Quantitative Genetics, 4th ed. Longman, Harlow, England.

    Google Scholar 

  • Fischer, J., Lindenmayer, D.B., 2000. An assessment ofthe published results of animal relocations, Biol. Conserv. 96, 1–11.

    Google Scholar 

  • Frankham, R., 2008. Genetic adaptation to captivity in species conservation programs, Mol. Ecol. 17, 325–333.

    Article  PubMed  Google Scholar 

  • Frankham, R., 2009. Where are we in conservation genetics and where do we need to go? Conserv, Genet. 11, 661–663.

    Google Scholar 

  • Frankham, R., Ballou, J.D., Briscoe, DA, 2010. Introduction to Conservation Genetics, 2nd ed. University Press, Cambridge.

    Book  Google Scholar 

  • Gilligan, D.M., Frankham, R., 2003. Dynamics of genetic adaptation to captivity, Conserv. Genet. 4, 189–197.

    Article  Google Scholar 

  • Goudet, J., 1995. FSTAT (Version 1.2): A computer program to calculate F-statistics, J. Hered. 86, 485–486.

    Article  Google Scholar 

  • Hausdorf, B., Hennig, C, 2010. Species delimitation using dominant and codominant multilocus markers, Syst. Biol. 59, 491–503.

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski, S.T., Waples, R.S., 2002. Relationship of effective to census size in fluctuating populations, Conserv. Biol. 16, 129–136.

    Article  Google Scholar 

  • Magiera, U., 2011. European studbook forthe sand cat (Felis margarita), in: European Studbook (EEP).

  • Mallon, D.P., Sliwa, A., Strauss, M., 2008. Felis margarita. In: IUCN Red List of Threatened Species. IUCN.

  • Marshall, T.C., Spalton, J.A., 2000. Simultaneous inbreeding and outbreeding depression in reintroduced Arabian oryx, Anim. Conserv. 3, 241–248.

    Article  Google Scholar 

  • Marshall, T.C., Sunnucks, P., Spalton, J.A., Greth, A., Pemberton, J.M., 1999. Use of genetic data for conservation management: the case ofthe Arabian oryx, Anim. Conserv. 2, 269–278.

    Article  Google Scholar 

  • dMenotti-Raymond, M., David, V.A., Lyons, LA., Schäffer, A.A., Tomlin, J.F., Hutton, M.K., O’Brien, S.J., 1999. A genetic linkage map of microsatellites in the domestic cat (Felis catus). Genomics 57, 9–23.

    Article  CAS  PubMed  Google Scholar 

  • Menotti-Raymond, M., O’Brien, S.J., 1995. Evolutionary conservation of ten microsatellites loci in four species of felidae, J. Hered. 86, 319–322.

    Article  CAS  PubMed  Google Scholar 

  • O’Brien, S.J., 2006. Animal conservation genetics - an overview with relevance to captive breeding programmes, EAZA News 57, 26–35.

    Google Scholar 

  • Peakall, R., Smouse, P.E., 2006. GENALEX 6: genetic analysis in Excel, Population genetic software for teaching and research. Mol. Ecol. Resour. 6, 288–295.

    Google Scholar 

  • Piry, S., Luikart, G., Cornuet, J., 1999. Computer note, Bottleneck: a computer program for detecting recent reductions in the effective size using allele frequency data. J. Hered. 90, 502–503.

    Google Scholar 

  • Pritchard, J.K., Stephens, M., Donnelly, P., 2000. Inference of population structure using multilocus genotype data, Genetics 155, 945–959.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queller, D.C., Goodnight, K.F., 1989. Estimating relatedness using molecular markers, Evolution 43, 258–275.

    Article  PubMed  Google Scholar 

  • Robert, A., 2009. Captive breeding genetics and reintroduction success, Biol. Conserv. 142, 2915–2922.

    Article  Google Scholar 

  • Saura, M., Perez-Figueroa, A., Fernandez, J., Toro, M.A., Caballero, A., 2008. Preserving population allele frequencies in ex situ conservation programs, Conserv. Biol. 22, 1277–1287.

    Article  PubMed  Google Scholar 

  • Signer, E.N., Schmidt, C.R., Jeffreys, A.J., 1994. DNA variability and parentage testing in captive Waldrapp ibises, Mol. Ecol. 3, 291–300.

    Article  CAS  PubMed  Google Scholar 

  • Taberlet, P., Griffin, S., Goossens, B., Questiau, S., Manceau, V., Escaravage, N., Waits, LP., Bouvet, J., 1996. Reliable genotyping of samples with very low DNA quantities using PCR, Nucleic Acids Res. 24, 3189–3194.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tallmon, DA, Koyuk, A., Luikart, G., Beaumont, M.A., 2008. ONeSAMP: a program to estimate effective population size using approximate Bayesian computation, Mol. Ecol. Resour. 8, 299–301.

    Article  PubMed  Google Scholar 

  • Van Oosterhout, C, Hutchinson, W.F., Wills, D.P.M., Shipley, P., 2004. Micro-checker: software for identifying and correcting genotyping errors inmicrosatellitedata, Mol. Ecol. 4, 535–538.

    Article  Google Scholar 

  • Walsh, P.S., Metzger, DA, Higuchi, R., 1991. Chelex® 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material, Biotechniques 10, 506–513.

    CAS  PubMed  Google Scholar 

  • Wang, J., 2007. Triadic IBD coefficients and applications to estimating pairwise relatedness, Genet. Res. 89, 135–153.

    Article  CAS  PubMed  Google Scholar 

  • Wang, J., 2010. COANCESTRY: a program for simulating, estimating and analysing relatedness and inbreeding coefficients, Mol. Ecol. Resour. 11, 141–145.

    Article  Google Scholar 

  • Waples, R., Gaggiotti, O., 2006. What is a population? An empirical evaluation of some genetic methods for identifying the number of gene pools and their degree of connectivity, Mol. Ecol. 15, 1419–1439.

    Article  CAS  PubMed  Google Scholar 

  • Williams, S.E., Hoffman, EA, 2009. Minimizing genetic adaptation in captive breeding programs: A review, Biol. Conserv. 142, 2388–2400.

    Article  Google Scholar 

  • Witzenberger, K., Hochkirch, A., 2011. Ex situ conservation genetics: a review of molecular studies on the genetic consequences of captive breeding programmes for endangered animal species, Biodivers. Conserv. 20, 1843–1861.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Hochkirch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witzenberger, K.A., Hochkirch, A. Evaluating ex situ conservation projects: Genetic structure of the captive population of the Arabian sand cat. Mamm Biol 78, 379–382 (2013). https://doi.org/10.1016/j.mambio.2013.03.001

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2013.03.001

Keywords

Navigation