Able, K.P., Gergits, W., 1985. Human navigation: attempts to replicate Baker’s displacement experiment. Magnetite biomineralization and magnetoreception in organisms. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 569–572.
Chapter
Google Scholar
Altmann, G., 1981. Untersuchung zur Magnetotaxis der Honigbiene, Apis mellifica L. Anz. Schädlingsk. 54, 177–179.
Google Scholar
Baker, R.R., 1980. Goal orientation by blindfolded humans after long-distance displacement: possible involvement of a magnetic sense. Science 210, 555–557.
CAS
PubMed
Article
Google Scholar
Baker, R.R., 1987. Human navigation and magnetoreception: the Manchester experiments do replicate. Anim. Behav. 35, 691–704.
Article
Google Scholar
Baker, R.R., Mather, J.G., Kennaugh, J.H., 1983. Magnetic bones in human sinuses. Nature 301, 78–80.
CAS
Article
Google Scholar
Batschelet, E., 1981. Circular Statistics in Biology. Academic Press, London, 372 pp.
Google Scholar
Bauer, G.B., Fuller, M., Perry, A., Dunn, J.R., Zoeger, J., 1985. Magnetoreception and biomineralization of magnetite in cetaceans. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 489–507.
Chapter
Google Scholar
Beason, R.C., 2005. Mechanisms of magnetic orientation in birds. Integr. Comp. Biol. 45, 565–573.
PubMed
Article
Google Scholar
Becker, G., 1963. Ruheeinstellung nach der Himmelsrichtung, eine Magnetfeldori-entierung bei Termiten. Naturwissenschaften 50, 455.
Becker, G., 1964. Reaktion von Insekten auf Magnetfelder, elektrische Felder und atmospherics. Z. Angew. Entomol. 54, 75–88.
Article
Google Scholar
Becker, G., 1974. Einfluß des Magnetfelds auf das Richtungsverhalten von Goldfischen. Naturwissenschaften 61, 220–221.
CAS
PubMed
Article
Google Scholar
Becker, G., 1971. Magnetfeld-Einfluß auf den Galeriebau von Termiten. Naturwissenschaften 58, 60.
Becker, G., 1976. Reaction of termites to weak alternating magnetic fields. Naturwissenschaften 63, 201–202.
Article
Google Scholar
Becker, G., Speck, U., 1964. Untersuchungen über die Magnetfeldorientierung von Dipteren. Z. Vergl. Physiol. 49, 301–340.
Article
Google Scholar
Begall, S.,Červený, J., Neef, J., Vojtech, O., Burda, H., 2008. Magnetic alignmentingraz-ing and resting cattle and deer. Proc. Natl. Acad. Sci. U.S.A. 105, 13451–13455.
PubMed
PubMed Central
Article
Google Scholar
Begall, S., Burda, H., Červený, J., Gerter, O., Neef-Weisse, J., Neˇmec, P., 2011. Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J. Comp. Phys. A 197, 1127–1133.
CAS
Article
Google Scholar
Bellini, S., 2009a. On a unique behavior of freshwater bacteria. Chin. J. Oceanol. Limnol. 27, 3–5.
Article
Google Scholar
Bellini, S., 2009b. Further studies on magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27, 6–12.
Article
Google Scholar
Benhamou, S., Sauvé, J.-P., Bovet, P., 1990.Spatial memoryinlarge scale movements: efficiency and limitation of the egocentric coding process. J. Theoret. Biol. 145, 1–12.
Article
Google Scholar
Blakemore, R., 1975. Magnetotactic bacteria. Science 190, 377–379.
CAS
PubMed
Article
Google Scholar
Blakemore, R.P., Frankel, R.B., Kalmijn, A.J., 1980. South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286, 384–385.
Article
Google Scholar
Burda, H., Beiles, A., Marhold, S., Simson, S., Nevo, E., Wiltschko, W., 1991. Magnetic orientation in subterranean mole rats of the superspecies Spalax ehrenbergi: experiments, patterns and memory. Isr. J. Zool. 37, 182–183.
Google Scholar
Burda, H., Begall, S., Červený, J., Neef, J., Němec, P., 2009. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc. Natl. Acad. Sci. U.S.A. 106, 5708–5713.
CAS
PubMed
PubMed Central
Article
Google Scholar
Burda, H., Marhold, S., Westenberger, T., Wiltschko, W., Wiltschko, R., 1990. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae, Rodentia). Experientia 46, 528–530.
CAS
PubMed
Article
Google Scholar
Burger, T., Lucova, M., Moritz, R., Oelschläger, H.H.A., Druga, R., Burda, H., Wiltschko, R., Wiltschko, W., Němec, P., 2010. Changing and shielded magnetic fields suppress c-Fos expression in the rodent navigation circuit: does input from the magnetosensory system contribute to internal representation of space? J. Roy. Soc. Interface 7, 1275–1292.
Article
Google Scholar
Calvert, G., Spence, C., Stein, B.E. (Eds.), 2004. The Handbook of Multisensory Processes. The MIT Press, Cambridge, MA, p. 915.
Google Scholar
Carrubba, S., Frilot, I., 2007. Evidence of a nonlinear human magnetic sense. Neuro-science 144, 356–367.
CAS
Google Scholar
Červeny´, J., Begall, S., Koubek, P., Nováková, P., Burda, H., 2011. Directional preference may enhance hunting accuracy in foraging foxes. Biol. Lett. 7, 355–357.
PubMed
PubMed Central
Article
Google Scholar
Chew, G., Brown, G.E., 1989. Orientation of rainbow trout (Salmo gairdneri)innormal and null magnetic fields. Can. J. Zool. 67, 641–643.
Article
Google Scholar
Cremer-Bartels, G., Krause, K., Kuechle, H., 1983. Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans. Graefes Arch. Clin. Exp. Ophthalmol. 220, 248–252.
Google Scholar
Cressey, D., 2008. ‘Magnetic cows’ are visible from space. Nat. News, https://doi.org/10.1038/news.2008.1059 (25 Aug 2008).
Cuppini, C., Ursino, M., Magosso, E., Rowland, B.A., Stein, B.A., 2010. An emergent model of multisensory integration in superior colliculus neurons. Front. Integr. Neurosci. 4, 1–15.
Google Scholar
Deoras, P.J.,1962. Some observations on the termites of Bombay. In: Termites in the Humid Tropics. Proc. New Delhi Symp. 1960. UNESCO, Paris, pp. 101–103.
Deutschlander, M.E., Freake, M.J., Borland, S.C., Phillips, J.B., Madden, R.C., Anderson, L.E., Wilson, B.W., 2003. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim. Behav. 65, 779–786.
Article
Google Scholar
Diebel, C.E., Proksch, R., Green, C.R., Neilson, P., Walker, M.M., 2000. Magnetite defines a vertebrate magnetoreceptor. Nature 406, 299–302.
CAS
PubMed
Article
Google Scholar
Dommer, D.H., Gazzolo, P.J., Painter, M.S., Phillips, J.B., 2008. Magnetic compass orientation by larval Drosophila melanogaster. J. Insect Physiol. 54, 719–726.
CAS
PubMed
Article
Google Scholar
Dusenbery, D.B., 1992. Sensory Ecology: How Organisms Acquire and Respond to Information. W.H. Freeman & Co, New York.
Etienne, A.S., Maurer, R., Saucy, F., 1988. Limitationsinthe assessment ofpath dependent information. Behaviour 106, 81–111.
Article
Google Scholar
Fildes, B.N., O’Loughlin, B.J., Bradshaw, J.L., Ewens, W.J., 1984. Human orientation with restricted sensory information: no evidence for magnetic sensitivity. Perception 13, 229–236.
CAS
PubMed
Article
Google Scholar
Foley, L.E., Gegear, R.J., Reppert, S.M., 2011. Human cryptochrome exhibits lightdependent magnetosensitivity. Nat. Commun. 2, 356.
Frankel, R.B., 2009. The discovery of magnetotactic/magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27, 1–2.
Article
Google Scholar
Frankel, R.B., Blakemore, R., De Araujo, F.F.T., Esquivel, D.M.S., Danon, J., 1981. Mag-netotactic bacteria at the geomagnetic equator. Science 212, 1269–1270.
CAS
PubMed
Article
Google Scholar
Frankel, R.B., Blakemore, R.P., Wolfe, R.S., 1979. Magnetite in freshwater magneto-tactic bacteria. Science 203, 1355–1356.
CAS
PubMed
Article
Google Scholar
Gegear, R.J., Casselman, A., Waddell, S., Reppert, S.M., 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018.
CAS
PubMed
PubMed Central
Article
Google Scholar
Gould, J.L., Kirschvink, J.L., Deffeyes, K.S., Brines, M.L., 1980. Orientation of demagnetized bees. J. Exp. Biol. 86, 1–8.
Google Scholar
Gould, J.L., 1985. Absence of human homing ability as measured by displacement experiments. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 595–599.
Chapter
Google Scholar
Gould, J.L., 2008. Animal navigation: the evolution of magnetic orientation. Curr. Biol. 18, 482–484.
Article
CAS
Google Scholar
Gould, J.L., Able, K.P., 1981. Human homing: an elusive phenomenon. Science 212, 1061–1063.
CAS
PubMed
Article
Google Scholar
Grubb, J.D., Reed, C.L., Bate, S., Garza, J., Roberts Jr., R.J., 2008. Walking reveals trunk orientation bias for visual attention. Percept. Psychophys. 70, 688–696.
PubMed
Article
Google Scholar
Hert, J., Jelinek, L., Pekarek, L., Pavlicek, A., 2011. No alignment of cattle along geomagnetic field lines found. J. Comp. Physiol. A 197, 677–682.
CAS
Article
Google Scholar
Hetem, R.S., Strauss, W.M., Heusinkveld, B.G., de Bie, S., Prins, H.H.T., van Wieren, S.E., 2011. Energy advantages of orientation to solar radiation in three African ruminants. J. Therm. Biol. 36, 452–460.
Article
Google Scholar
Heyers, D., Manns, M., Luksch, H., Güntürkün, O., Mouritsen, H., 2007. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One 9, e937.
Holland, R.A., Thorup, K., Vonhof, M., Cochran, W.W., Wikelski, M., 2006. Bat orientation using Earth’s magnetic field. Nature 444, 653–702.
Google Scholar
Holland, R.A., Kirschvink, J.L., Doak, T.G., Wikelski, M., 2008. Bats use magnetite to detect the Earth’s magnetic field. PLoS One 3, e1676.
PubMed
PubMed Central
Article
CAS
Google Scholar
Holland, R.A., Borissov, I., Siemers, B.M., 2010. A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proc. Natl. Acad. Sci. U.S.A. 107, 6941–6945.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hsu, C.-Y., Ko, F.-Y., Li, C.-W., Fann, K., Lue, J.-T., 2007. Magnetoreception system in honeybees (Apis mellifera). PLoS One 2, e395.
PubMed
PubMed Central
Article
CAS
Google Scholar
Kalmijn, A.J., Blakemore, R.P., 1978. The magnetic behavior of mud bacteria. In: Schmidt-Koenig, K., Keeton, W.T. (Eds.), Animal Migration, Navigation and Homing. Springer-Verlag, Berlin, 354 pp.
Google Scholar
Kimchi, T., Etienne, A.S., Terkel, J., 2004. A subterranean mammal uses the magnetic compass for path integration. Proc. Natl. Acad. Sci. U.S.A. 101, 1105–1109.
Google Scholar
Kimchi, T., Terkel, J., 2001. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J. Exp. Biol. 204, 751–758.
CAS
PubMed
Google Scholar
Kirschvink, J.L., Kobayashi-Kirschvink, A., Woodford, B.J., 1992. Magnetite biomin-eralization in the human brain. Proc. Natl. Acad. Sci. U.S.A. 89, 7683–7687.
CAS
PubMed
PubMed Central
Article
Google Scholar
Kirschvink, J.L., Winklhofer, M., Walker, M.M., 2010. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. Roy. Soc. Interface 7, 179–191.
Article
Google Scholar
Lindauer, M., Martin, H., 1968. Die Schwereorientierung der Bienen unter dem Ein-fluß des Erdmagnetfeldes. Zeitschr. Vergl. Physiol. 60, 219–243.
Article
Google Scholar
Marhold, S., Beiles, A., Burda, H., Nevo, E., 2000. Spontaneous directional preference in a subterranean rodent, the blind mole-rat, Spalax ehrenbergi. Folia Zool. 49, 7–18.
Google Scholar
Marhold, S., Burda, H., Kreilos, I., Wiltschko, W., 1997a. Magnetic orientation in com-monmole-ratsfromZambia.In:OrientationandNavigation-Birds, Humansand Other Animals. Royal Institute of Navigation, Oxford, pp. 5.1–5.9.
Marhold, S., Wiltschko, W., Burda, H., 1997b. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423.
CAS
Article
Google Scholar
Martin, H., Lindauer, M., 1977. Der Einfluß des Erdmagnetfeldes auf die Schwereori-entierung der Honigbiene (Apis mellifica). J. Comp. Physiol. 122, 145–187.
Article
Google Scholar
Mather, J.G., Baker, R.R., 1981. Magnetic sense of direction in woodmice for route-based navigation. Nature 291, 152–155.
Article
Google Scholar
Moritz, R.E., Burda, H., Begall, S., Neˇmec, P., 2007. Magnetic compass: a useful tool underground. In: Begall, S., Burda, H., Schleich, C.E. (Eds.), Subterranean Rodents: News from Underground. Springer Verlag, Heidelberg, pp. 161–174.
Chapter
Google Scholar
Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., Jarvis, E.D., 2005. Night vision brain area in migratory songbirds. Proc. Natl. Acad. Sci. U.S.A. 102, 8339–8344.
CAS
PubMed
PubMed Central
Article
Google Scholar
Muheim, R., Jenni, L., Weindler, P., 1999. The orientation behaviour of chaffinches, Fringilla coelebs, caught during active migratory flight, in relation to the sun. Ethology 105, 97–110.
Article
Google Scholar
Muheim, R., Edgar, N.M., Sloan, K.A., Phillips, J.B., 2006. Magnetic compass orientation in C57BL/6J mice. Learn. Behav. 34, 366–373.
PubMed
Article
Google Scholar
Němec, P., Altmann, J., Marhold, S., Burda, H., Oelschläger, H.A., 2001. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368.
PubMed
Article
Google Scholar
Neˇmec, P., Cveková, P., Benada, O., Wielkopolska, E., Olkowicz, S., Turlejski, K., Burda, H., Bennett, N.C., Peichl, L., 2008. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364.
Article
Google Scholar
Oliveriusová, L., Némec, P., Králová, Z., Sedlácˇek F., under review. Magnetic compass orientationintwo strictly subterranean rodents: learnedor species-specific innate directional preference? J. Exp. Biol.
Patzenhauerova, H., Bryja, J., Sumbera, R., 2010. Kinship structure and mating system in a solitary subterranean rodent, the silvery mole-rat. Behav. Ecol. Sociobiol. 64, 757–767.
Article
Google Scholar
Phillips, J.B., 1986. Two magnetoreception pathways in a migratory salamander. Science 233, 765–767.
CAS
PubMed
Article
Google Scholar
Phillips, J.B., 1996. Magnetic navigation. J. Theoret. Biol. 180, 309–319.
Article
Google Scholar
Phillips, J.B., Borland, S.C., Freake, M.J., Brassart, J., Kirschvink, J.L., 2002. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exp. Biol. 205, 3903–3914.
Google Scholar
Phillips, J.B., Muheim, R., Jorge, P.E., 2010. A behavioral perspective on the biophysics ofthelight-dependentmagnetic compass:alinkbetween directional and spatial perception? J. Exp. Biol. 213, 3247–3255.
Article
Google Scholar
Ritz, T., Adem, S., Schulten, K., 2000. A model for photoreceptor-based magnetore-ception in birds. Biophys. J. 78, 707–718.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ritz, T., Thalau, P., Phillips, J., Wiltschko, R., Wiltschko, W., 2004. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 429, 177–180.
CAS
PubMed
Article
Google Scholar
Roonwal, M.L., 1958. Recent work on termite research in India (1947–57). Trans. Bose Res. Inst. 22, 77–100.
Google Scholar
Ruhenstroth-Bauer, G., Rüther, E., Reinertshofer, T.H., 1987. Dependence of a sleeping parameter from the N-S or E-W sleeping direction. Z. Naturf. 42c, 1140–1142.
Google Scholar
Ruhenstroth-Bauer, G., Günther, W., Hantschk, I., Klages, U., Kugler, J., Peters, J., 1993. Influence of the Earth’s magnetic field on resting and activated EEG mapping in normal subjects. Int. J. Neurosci. 73, 195–201.
CAS
PubMed
Article
Google Scholar
Sandberg, R., Pettersson, J., Persson, K., 1991. Migratory orientation of free flying robins Erithacus rubecula and pied flycatchers Ficedula hypoleuca: release experiments. Ornis Scand. 22, 1–11.
Article
Google Scholar
Schlegel, P.A., 2007. Spontaneous preferences for magnetic compass direction in the American red-spotted newt, Notophthalmus viridescens (Salamandridae, Urodela). J. Ethol. 25, 177–184.
Article
Google Scholar
Schlegel, P.A., 2008. Magnetic and othernon-visualorientationmechanismsinsome cave and surface urodeles. J. Ethol. 26, 347–359.
Article
Google Scholar
Schlegel, P.A., Renner, H., 2007. Innate preference for magnetic compass direction in the alpine newt, Triturus alpestris (Salamandridae, Urodela)? J. Ethol 25, 185–193.
Article
Google Scholar
Schulten, K., Swenberg, C.E., Weller, A., 1978. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Physikal. Chem. Neue Folge 111, 1–5.
Article
Google Scholar
Semm, P., Nohr, D., Demaine, C., Wiltschko, W., 1984. Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeon’s brain. J. Comp. Physiol. A 155, 283–288.
Article
Google Scholar
Semm, P., Demaine, C., 1986. Neurophysiological properties of magnetic cells in the pigeon’s visual system. J. Comp. Physiol. A 159, 619–625.
CAS
PubMed
Article
Google Scholar
Stapput, K., Thalau, P., Wiltschko, R., Wiltschko, W., 2008. Orientation of birds in total darkness. Curr. Biol. 18, 602–606.
CAS
PubMed
Article
Google Scholar
Stein, B.E., Meredith, M.A., 1993. The Merging of the Senses. The MIT Press, Cambridge, MA.
Google Scholar
Stein, B.E., Stanford, T.R., 2008. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266.
CAS
PubMed
Article
Google Scholar
Stuchlik, A., Fenton, A.A., Bures, J., 2001. Substratal idiothetic navigation of rats is impaired by removal or devaluation of extramaze and intramaze cues. Proc. Natl. Acad Sci. U.S.A. 98, 3537–3542.
CAS
PubMed
PubMed Central
Article
Google Scholar
Tesch, F., Lelek, A., 1973. Directional behaviour of transplanted stationary and migratory forms of the eel, Anguilla anguilla, in a circular tank. Neth. J. Sea Res. 7, 46–52.
Article
Google Scholar
Thalau, P., Ritz, T., Burda, H., Wegner, R.E., Wiltschko, R., 2006. The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R. Soc. Interface 3, 583–587.
PubMed
PubMed Central
Article
Google Scholar
Thoss, F., Bartsch, B., 2003. The human visual threshold depends on direction and strength of a weak magnetic field. J. Comp. Physiol. A 189, 777–779.
CAS
Article
Google Scholar
Thoss, F., Bartsch, B., Tellschaft, D., Thoss, M., 1999. Periodic inversion of the vertical component of the Earth’s magnetic field influences fluctuations of visual sensitivity in humans. Bioelectromagnetics 20, 459–461.
CAS
PubMed
Article
Google Scholar
Thoss, F., Bartsch, B., Fritzsche, B., Tellschaft, D., Thoss, M., 2000. The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. J. Comp. Phys. A 186, 1007–1010.
CAS
Article
Google Scholar
Thoss, F., Bartsch, B., Tellschaft, D., Thoss, M., 2002. The light sensitivity of the human visualsystem depends on the direction of view. J.Comp. Physiol.A188, 235–237.
Google Scholar
Vácha, M., Kvicalova, M., Puzova, T., 2010. American cockroaches prefer four cardinal geomagnetic positions at rest. Behaviour 147, 425–440.
Article
Google Scholar
Vargas, J.P., Siegel, J.J., Bingman, V.P., 2006. The effects of a changing ambient magnetic field onsingle-unit activity in the homing pigeon hippocampus. Brain Res. Bull. 70, 158–164.
PubMed
Article
Google Scholar
Walker, M.M., Bitterman, M., 1989. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145, 489–494.
Google Scholar
Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C., Green, C.R., 1997. Structure and function of the vertebrate magnetic sense. Nature 390, 371–376.
CAS
PubMed
Article
Google Scholar
Wang, Y., Pan, Y., Parsons, S., Walker, M.M., Zhang, S., 2007. Bats respond to polarity of a magnetic field. Proc. Roy. Soc. B 274, 2901–2905.
Article
Google Scholar
Wegner, R.E., Begall, S., Burda, H., 2006. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J. Exp. Biol. 209, 4747–4750.
PubMed
Article
Google Scholar
Wehner, R., Labhart, T., 1970. Perceptionofthegeomagneticfieldinthefly Drosophila melanogaster. Cell. Mol. Life Sci. 26, 967–968.
CAS
Article
Google Scholar
Westby, G., Partridge, K.J., 1986. Human homing: still no evidence despite geomagnetic controls. J. Exp. Biol. 120, 325.
Wiltschko, R., Ritz, T., Stapput, K., Thalau, P., Wiltschko, W., 2005. Two different types of light-dependent responses to magnetic fields in birds. Curr. Biol. 15, 1518–1523.
CAS
PubMed
Article
Google Scholar
Wiltschko, R., Stapput, K., Ritz, T., Thalau, P., Wiltschko, W., 2007. Magnetoreception in birds: different physical processes for two types of directional responses. HFSP J. 1, 41–48.
PubMed
PubMed Central
Article
Google Scholar
Wiltschko, R., Stapput, K., Thalau, P., Wiltschko, W., 2010. Directional orientation of birds by the magnetic field under different light conditions. J. R. Soc. Interface 7, 163–177.
Article
Google Scholar
Wiltschko, R., Wiltschko, W., 1995. Magnetic Orientation in Animals. Springer, Berlin, 297 pp.
Book
Google Scholar
Wiltschko, R., Wiltschko, W., 2006. Magnetoreceptio. Bioessays 28, 157–168. Wiltschko, W., Wiltschko, R., 1972. Magnetic compass of European robins. Science 176, 62–64.
Google Scholar