Skip to main content
Log in

Magnetic alignment in mammals and other animals

  • Review
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Magnetic alignment (MA) constitutes the simplest directional response to the geomagnetic field. In contrast to magnetic compass orientation, MA is not goal directed and represents a spontaneous, fixed directional response. Because animals tend to align their bodies along or perpendicular to the magnetic field lines, MA typically leads to bimodal or quadrimodal orientation, although there is also growing evidence for a fixed unimodal orientation not necessarily coinciding with the magnetic cardinal directions. MA has been demonstrated in diverse animals including insects, amphibians, fish, and mammals. Alignment can be expressed by animals during resting as well as on the move (e.g. while grazing, hunting, feeding, etc.). Here, we briefly survey characteristic features and classical examples of MA and review the current knowledge about the occurrence of MA in mammals. In addition, we summarize what is known about mechanisms underlying MA and discuss its prospective biological functions. Finally, we highlight some physiological effects of alignment along the magnetic field axes reported in humans. We argue that the phenomenon of MA adds a new paradigm that can be exploited for investigation of magnetoreception in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Able, K.P., Gergits, W., 1985. Human navigation: attempts to replicate Baker’s displacement experiment. Magnetite biomineralization and magnetoreception in organisms. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 569–572.

    Chapter  Google Scholar 

  • Altmann, G., 1981. Untersuchung zur Magnetotaxis der Honigbiene, Apis mellifica L. Anz. Schädlingsk. 54, 177–179.

    Google Scholar 

  • Baker, R.R., 1980. Goal orientation by blindfolded humans after long-distance displacement: possible involvement of a magnetic sense. Science 210, 555–557.

    Article  CAS  PubMed  Google Scholar 

  • Baker, R.R., 1987. Human navigation and magnetoreception: the Manchester experiments do replicate. Anim. Behav. 35, 691–704.

    Article  Google Scholar 

  • Baker, R.R., Mather, J.G., Kennaugh, J.H., 1983. Magnetic bones in human sinuses. Nature 301, 78–80.

    Article  CAS  Google Scholar 

  • Batschelet, E., 1981. Circular Statistics in Biology. Academic Press, London, 372 pp.

    Google Scholar 

  • Bauer, G.B., Fuller, M., Perry, A., Dunn, J.R., Zoeger, J., 1985. Magnetoreception and biomineralization of magnetite in cetaceans. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 489–507.

    Chapter  Google Scholar 

  • Beason, R.C., 2005. Mechanisms of magnetic orientation in birds. Integr. Comp. Biol. 45, 565–573.

    Article  PubMed  Google Scholar 

  • Becker, G., 1963. Ruheeinstellung nach der Himmelsrichtung, eine Magnetfeldori-entierung bei Termiten. Naturwissenschaften 50, 455.

  • Becker, G., 1964. Reaktion von Insekten auf Magnetfelder, elektrische Felder und atmospherics. Z. Angew. Entomol. 54, 75–88.

    Article  Google Scholar 

  • Becker, G., 1974. Einfluß des Magnetfelds auf das Richtungsverhalten von Goldfischen. Naturwissenschaften 61, 220–221.

    Article  CAS  PubMed  Google Scholar 

  • Becker, G., 1971. Magnetfeld-Einfluß auf den Galeriebau von Termiten. Naturwissenschaften 58, 60.

  • Becker, G., 1976. Reaction of termites to weak alternating magnetic fields. Naturwissenschaften 63, 201–202.

    Article  Google Scholar 

  • Becker, G., Speck, U., 1964. Untersuchungen über die Magnetfeldorientierung von Dipteren. Z. Vergl. Physiol. 49, 301–340.

    Article  Google Scholar 

  • Begall, S.,Červený, J., Neef, J., Vojtech, O., Burda, H., 2008. Magnetic alignmentingraz-ing and resting cattle and deer. Proc. Natl. Acad. Sci. U.S.A. 105, 13451–13455.

    Article  PubMed  PubMed Central  Google Scholar 

  • Begall, S., Burda, H., Červený, J., Gerter, O., Neef-Weisse, J., Neˇmec, P., 2011. Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J. Comp. Phys. A 197, 1127–1133.

    Article  CAS  Google Scholar 

  • Bellini, S., 2009a. On a unique behavior of freshwater bacteria. Chin. J. Oceanol. Limnol. 27, 3–5.

    Article  Google Scholar 

  • Bellini, S., 2009b. Further studies on magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27, 6–12.

    Article  Google Scholar 

  • Benhamou, S., Sauvé, J.-P., Bovet, P., 1990.Spatial memoryinlarge scale movements: efficiency and limitation of the egocentric coding process. J. Theoret. Biol. 145, 1–12.

    Article  Google Scholar 

  • Blakemore, R., 1975. Magnetotactic bacteria. Science 190, 377–379.

    Article  CAS  PubMed  Google Scholar 

  • Blakemore, R.P., Frankel, R.B., Kalmijn, A.J., 1980. South-seeking magnetotactic bacteria in the Southern Hemisphere. Nature 286, 384–385.

    Article  Google Scholar 

  • Burda, H., Beiles, A., Marhold, S., Simson, S., Nevo, E., Wiltschko, W., 1991. Magnetic orientation in subterranean mole rats of the superspecies Spalax ehrenbergi: experiments, patterns and memory. Isr. J. Zool. 37, 182–183.

    Google Scholar 

  • Burda, H., Begall, S., Červený, J., Neef, J., Němec, P., 2009. Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc. Natl. Acad. Sci. U.S.A. 106, 5708–5713.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Burda, H., Marhold, S., Westenberger, T., Wiltschko, W., Wiltschko, R., 1990. Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae, Rodentia). Experientia 46, 528–530.

    Article  CAS  PubMed  Google Scholar 

  • Burger, T., Lucova, M., Moritz, R., Oelschläger, H.H.A., Druga, R., Burda, H., Wiltschko, R., Wiltschko, W., Němec, P., 2010. Changing and shielded magnetic fields suppress c-Fos expression in the rodent navigation circuit: does input from the magnetosensory system contribute to internal representation of space? J. Roy. Soc. Interface 7, 1275–1292.

    Article  Google Scholar 

  • Calvert, G., Spence, C., Stein, B.E. (Eds.), 2004. The Handbook of Multisensory Processes. The MIT Press, Cambridge, MA, p. 915.

    Google Scholar 

  • Carrubba, S., Frilot, I., 2007. Evidence of a nonlinear human magnetic sense. Neuro-science 144, 356–367.

    CAS  Google Scholar 

  • Červeny´, J., Begall, S., Koubek, P., Nováková, P., Burda, H., 2011. Directional preference may enhance hunting accuracy in foraging foxes. Biol. Lett. 7, 355–357.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chew, G., Brown, G.E., 1989. Orientation of rainbow trout (Salmo gairdneri)innormal and null magnetic fields. Can. J. Zool. 67, 641–643.

    Article  Google Scholar 

  • Cremer-Bartels, G., Krause, K., Kuechle, H., 1983. Influence of low magnetic-field-strength variations on the retina and pineal gland of quail and humans. Graefes Arch. Clin. Exp. Ophthalmol. 220, 248–252.

    Google Scholar 

  • Cressey, D., 2008. ‘Magnetic cows’ are visible from space. Nat. News, https://doi.org/10.1038/news.2008.1059 (25 Aug 2008).

  • Cuppini, C., Ursino, M., Magosso, E., Rowland, B.A., Stein, B.A., 2010. An emergent model of multisensory integration in superior colliculus neurons. Front. Integr. Neurosci. 4, 1–15.

    Google Scholar 

  • Deoras, P.J.,1962. Some observations on the termites of Bombay. In: Termites in the Humid Tropics. Proc. New Delhi Symp. 1960. UNESCO, Paris, pp. 101–103.

  • Deutschlander, M.E., Freake, M.J., Borland, S.C., Phillips, J.B., Madden, R.C., Anderson, L.E., Wilson, B.W., 2003. Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim. Behav. 65, 779–786.

    Article  Google Scholar 

  • Diebel, C.E., Proksch, R., Green, C.R., Neilson, P., Walker, M.M., 2000. Magnetite defines a vertebrate magnetoreceptor. Nature 406, 299–302.

    Article  CAS  PubMed  Google Scholar 

  • Dommer, D.H., Gazzolo, P.J., Painter, M.S., Phillips, J.B., 2008. Magnetic compass orientation by larval Drosophila melanogaster. J. Insect Physiol. 54, 719–726.

    Article  CAS  PubMed  Google Scholar 

  • Dusenbery, D.B., 1992. Sensory Ecology: How Organisms Acquire and Respond to Information. W.H. Freeman & Co, New York.

  • Etienne, A.S., Maurer, R., Saucy, F., 1988. Limitationsinthe assessment ofpath dependent information. Behaviour 106, 81–111.

    Article  Google Scholar 

  • Fildes, B.N., O’Loughlin, B.J., Bradshaw, J.L., Ewens, W.J., 1984. Human orientation with restricted sensory information: no evidence for magnetic sensitivity. Perception 13, 229–236.

    Article  CAS  PubMed  Google Scholar 

  • Foley, L.E., Gegear, R.J., Reppert, S.M., 2011. Human cryptochrome exhibits lightdependent magnetosensitivity. Nat. Commun. 2, 356.

  • Frankel, R.B., 2009. The discovery of magnetotactic/magnetosensitive bacteria. Chin. J. Oceanol. Limnol. 27, 1–2.

    Article  Google Scholar 

  • Frankel, R.B., Blakemore, R., De Araujo, F.F.T., Esquivel, D.M.S., Danon, J., 1981. Mag-netotactic bacteria at the geomagnetic equator. Science 212, 1269–1270.

    Article  CAS  PubMed  Google Scholar 

  • Frankel, R.B., Blakemore, R.P., Wolfe, R.S., 1979. Magnetite in freshwater magneto-tactic bacteria. Science 203, 1355–1356.

    Article  CAS  PubMed  Google Scholar 

  • Gegear, R.J., Casselman, A., Waddell, S., Reppert, S.M., 2008. Cryptochrome mediates light-dependent magnetosensitivity in Drosophila. Nature 454, 1014–1018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould, J.L., Kirschvink, J.L., Deffeyes, K.S., Brines, M.L., 1980. Orientation of demagnetized bees. J. Exp. Biol. 86, 1–8.

    Google Scholar 

  • Gould, J.L., 1985. Absence of human homing ability as measured by displacement experiments. In: Kirschvink, J.L., Jones, D.S., MacFadden, B.J. (Eds.), Magnetite Biomineralization and Magnetoreception in Animals: A New Biomagnetism. Plenum Press, New York, pp. 595–599.

    Chapter  Google Scholar 

  • Gould, J.L., 2008. Animal navigation: the evolution of magnetic orientation. Curr. Biol. 18, 482–484.

    Article  CAS  Google Scholar 

  • Gould, J.L., Able, K.P., 1981. Human homing: an elusive phenomenon. Science 212, 1061–1063.

    Article  CAS  PubMed  Google Scholar 

  • Grubb, J.D., Reed, C.L., Bate, S., Garza, J., Roberts Jr., R.J., 2008. Walking reveals trunk orientation bias for visual attention. Percept. Psychophys. 70, 688–696.

    Article  PubMed  Google Scholar 

  • Hert, J., Jelinek, L., Pekarek, L., Pavlicek, A., 2011. No alignment of cattle along geomagnetic field lines found. J. Comp. Physiol. A 197, 677–682.

    Article  CAS  Google Scholar 

  • Hetem, R.S., Strauss, W.M., Heusinkveld, B.G., de Bie, S., Prins, H.H.T., van Wieren, S.E., 2011. Energy advantages of orientation to solar radiation in three African ruminants. J. Therm. Biol. 36, 452–460.

    Article  Google Scholar 

  • Heyers, D., Manns, M., Luksch, H., Güntürkün, O., Mouritsen, H., 2007. A visual pathway links brain structures active during magnetic compass orientation in migratory birds. PLoS One 9, e937.

  • Holland, R.A., Thorup, K., Vonhof, M., Cochran, W.W., Wikelski, M., 2006. Bat orientation using Earth’s magnetic field. Nature 444, 653–702.

    Google Scholar 

  • Holland, R.A., Kirschvink, J.L., Doak, T.G., Wikelski, M., 2008. Bats use magnetite to detect the Earth’s magnetic field. PLoS One 3, e1676.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Holland, R.A., Borissov, I., Siemers, B.M., 2010. A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proc. Natl. Acad. Sci. U.S.A. 107, 6941–6945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hsu, C.-Y., Ko, F.-Y., Li, C.-W., Fann, K., Lue, J.-T., 2007. Magnetoreception system in honeybees (Apis mellifera). PLoS One 2, e395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kalmijn, A.J., Blakemore, R.P., 1978. The magnetic behavior of mud bacteria. In: Schmidt-Koenig, K., Keeton, W.T. (Eds.), Animal Migration, Navigation and Homing. Springer-Verlag, Berlin, 354 pp.

    Google Scholar 

  • Kimchi, T., Etienne, A.S., Terkel, J., 2004. A subterranean mammal uses the magnetic compass for path integration. Proc. Natl. Acad. Sci. U.S.A. 101, 1105–1109.

    Google Scholar 

  • Kimchi, T., Terkel, J., 2001. Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J. Exp. Biol. 204, 751–758.

    CAS  PubMed  Google Scholar 

  • Kirschvink, J.L., Kobayashi-Kirschvink, A., Woodford, B.J., 1992. Magnetite biomin-eralization in the human brain. Proc. Natl. Acad. Sci. U.S.A. 89, 7683–7687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirschvink, J.L., Winklhofer, M., Walker, M.M., 2010. Biophysics of magnetic orientation: strengthening the interface between theory and experimental design. J. Roy. Soc. Interface 7, 179–191.

    Article  Google Scholar 

  • Lindauer, M., Martin, H., 1968. Die Schwereorientierung der Bienen unter dem Ein-fluß des Erdmagnetfeldes. Zeitschr. Vergl. Physiol. 60, 219–243.

    Article  Google Scholar 

  • Marhold, S., Beiles, A., Burda, H., Nevo, E., 2000. Spontaneous directional preference in a subterranean rodent, the blind mole-rat, Spalax ehrenbergi. Folia Zool. 49, 7–18.

    Google Scholar 

  • Marhold, S., Burda, H., Kreilos, I., Wiltschko, W., 1997a. Magnetic orientation in com-monmole-ratsfromZambia.In:OrientationandNavigation-Birds, Humansand Other Animals. Royal Institute of Navigation, Oxford, pp. 5.1–5.9.

  • Marhold, S., Wiltschko, W., Burda, H., 1997b. A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84, 421–423.

    Article  CAS  Google Scholar 

  • Martin, H., Lindauer, M., 1977. Der Einfluß des Erdmagnetfeldes auf die Schwereori-entierung der Honigbiene (Apis mellifica). J. Comp. Physiol. 122, 145–187.

    Article  Google Scholar 

  • Mather, J.G., Baker, R.R., 1981. Magnetic sense of direction in woodmice for route-based navigation. Nature 291, 152–155.

    Article  Google Scholar 

  • Moritz, R.E., Burda, H., Begall, S., Neˇmec, P., 2007. Magnetic compass: a useful tool underground. In: Begall, S., Burda, H., Schleich, C.E. (Eds.), Subterranean Rodents: News from Underground. Springer Verlag, Heidelberg, pp. 161–174.

    Chapter  Google Scholar 

  • Mouritsen, H., Feenders, G., Liedvogel, M., Wada, K., Jarvis, E.D., 2005. Night vision brain area in migratory songbirds. Proc. Natl. Acad. Sci. U.S.A. 102, 8339–8344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muheim, R., Jenni, L., Weindler, P., 1999. The orientation behaviour of chaffinches, Fringilla coelebs, caught during active migratory flight, in relation to the sun. Ethology 105, 97–110.

    Article  Google Scholar 

  • Muheim, R., Edgar, N.M., Sloan, K.A., Phillips, J.B., 2006. Magnetic compass orientation in C57BL/6J mice. Learn. Behav. 34, 366–373.

    Article  PubMed  Google Scholar 

  • Němec, P., Altmann, J., Marhold, S., Burda, H., Oelschläger, H.A., 2001. Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294, 366–368.

    Article  PubMed  Google Scholar 

  • Neˇmec, P., Cveková, P., Benada, O., Wielkopolska, E., Olkowicz, S., Turlejski, K., Burda, H., Bennett, N.C., Peichl, L., 2008. The visual system in subterranean African mole-rats (Rodentia, Bathyergidae): retina, subcortical visual nuclei and primary visual cortex. Brain Res. Bull. 75, 356–364.

    Article  Google Scholar 

  • Oliveriusová, L., Némec, P., Králová, Z., Sedlácˇek F., under review. Magnetic compass orientationintwo strictly subterranean rodents: learnedor species-specific innate directional preference? J. Exp. Biol.

  • Patzenhauerova, H., Bryja, J., Sumbera, R., 2010. Kinship structure and mating system in a solitary subterranean rodent, the silvery mole-rat. Behav. Ecol. Sociobiol. 64, 757–767.

    Article  Google Scholar 

  • Phillips, J.B., 1986. Two magnetoreception pathways in a migratory salamander. Science 233, 765–767.

    Article  CAS  PubMed  Google Scholar 

  • Phillips, J.B., 1996. Magnetic navigation. J. Theoret. Biol. 180, 309–319.

    Article  Google Scholar 

  • Phillips, J.B., Borland, S.C., Freake, M.J., Brassart, J., Kirschvink, J.L., 2002. ‘Fixed-axis’ magnetic orientation by an amphibian: non-shoreward-directed compass orientation, misdirected homing or positioning a magnetite-based map detector in a consistent alignment relative to the magnetic field? J. Exp. Biol. 205, 3903–3914.

    Google Scholar 

  • Phillips, J.B., Muheim, R., Jorge, P.E., 2010. A behavioral perspective on the biophysics ofthelight-dependentmagnetic compass:alinkbetween directional and spatial perception? J. Exp. Biol. 213, 3247–3255.

    Article  Google Scholar 

  • Ritz, T., Adem, S., Schulten, K., 2000. A model for photoreceptor-based magnetore-ception in birds. Biophys. J. 78, 707–718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ritz, T., Thalau, P., Phillips, J., Wiltschko, R., Wiltschko, W., 2004. Resonance effects indicate a radical pair mechanism for avian magnetic compass. Nature 429, 177–180.

    Article  CAS  PubMed  Google Scholar 

  • Roonwal, M.L., 1958. Recent work on termite research in India (1947–57). Trans. Bose Res. Inst. 22, 77–100.

    Google Scholar 

  • Ruhenstroth-Bauer, G., Rüther, E., Reinertshofer, T.H., 1987. Dependence of a sleeping parameter from the N-S or E-W sleeping direction. Z. Naturf. 42c, 1140–1142.

    Google Scholar 

  • Ruhenstroth-Bauer, G., Günther, W., Hantschk, I., Klages, U., Kugler, J., Peters, J., 1993. Influence of the Earth’s magnetic field on resting and activated EEG mapping in normal subjects. Int. J. Neurosci. 73, 195–201.

    Article  CAS  PubMed  Google Scholar 

  • Sandberg, R., Pettersson, J., Persson, K., 1991. Migratory orientation of free flying robins Erithacus rubecula and pied flycatchers Ficedula hypoleuca: release experiments. Ornis Scand. 22, 1–11.

    Article  Google Scholar 

  • Schlegel, P.A., 2007. Spontaneous preferences for magnetic compass direction in the American red-spotted newt, Notophthalmus viridescens (Salamandridae, Urodela). J. Ethol. 25, 177–184.

    Article  Google Scholar 

  • Schlegel, P.A., 2008. Magnetic and othernon-visualorientationmechanismsinsome cave and surface urodeles. J. Ethol. 26, 347–359.

    Article  Google Scholar 

  • Schlegel, P.A., Renner, H., 2007. Innate preference for magnetic compass direction in the alpine newt, Triturus alpestris (Salamandridae, Urodela)? J. Ethol 25, 185–193.

    Article  Google Scholar 

  • Schulten, K., Swenberg, C.E., Weller, A., 1978. A biomagnetic sensory mechanism based on magnetic field modulated coherent electron spin motion. Z. Physikal. Chem. Neue Folge 111, 1–5.

    Article  Google Scholar 

  • Semm, P., Nohr, D., Demaine, C., Wiltschko, W., 1984. Neural basis of the magnetic compass: interaction of visual, magnetic and vestibular inputs in the pigeon’s brain. J. Comp. Physiol. A 155, 283–288.

    Article  Google Scholar 

  • Semm, P., Demaine, C., 1986. Neurophysiological properties of magnetic cells in the pigeon’s visual system. J. Comp. Physiol. A 159, 619–625.

    Article  CAS  PubMed  Google Scholar 

  • Stapput, K., Thalau, P., Wiltschko, R., Wiltschko, W., 2008. Orientation of birds in total darkness. Curr. Biol. 18, 602–606.

    Article  CAS  PubMed  Google Scholar 

  • Stein, B.E., Meredith, M.A., 1993. The Merging of the Senses. The MIT Press, Cambridge, MA.

    Google Scholar 

  • Stein, B.E., Stanford, T.R., 2008. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266.

    Article  CAS  PubMed  Google Scholar 

  • Stuchlik, A., Fenton, A.A., Bures, J., 2001. Substratal idiothetic navigation of rats is impaired by removal or devaluation of extramaze and intramaze cues. Proc. Natl. Acad Sci. U.S.A. 98, 3537–3542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tesch, F., Lelek, A., 1973. Directional behaviour of transplanted stationary and migratory forms of the eel, Anguilla anguilla, in a circular tank. Neth. J. Sea Res. 7, 46–52.

    Article  Google Scholar 

  • Thalau, P., Ritz, T., Burda, H., Wegner, R.E., Wiltschko, R., 2006. The magnetic compass mechanisms of birds and rodents are based on different physical principles. J. R. Soc. Interface 3, 583–587.

    Article  PubMed  PubMed Central  Google Scholar 

  • Thoss, F., Bartsch, B., 2003. The human visual threshold depends on direction and strength of a weak magnetic field. J. Comp. Physiol. A 189, 777–779.

    Article  CAS  Google Scholar 

  • Thoss, F., Bartsch, B., Tellschaft, D., Thoss, M., 1999. Periodic inversion of the vertical component of the Earth’s magnetic field influences fluctuations of visual sensitivity in humans. Bioelectromagnetics 20, 459–461.

    Article  CAS  PubMed  Google Scholar 

  • Thoss, F., Bartsch, B., Fritzsche, B., Tellschaft, D., Thoss, M., 2000. The magnetic field sensitivity of the human visual system shows resonance and compass characteristic. J. Comp. Phys. A 186, 1007–1010.

    Article  CAS  Google Scholar 

  • Thoss, F., Bartsch, B., Tellschaft, D., Thoss, M., 2002. The light sensitivity of the human visualsystem depends on the direction of view. J.Comp. Physiol.A188, 235–237.

    Google Scholar 

  • Vácha, M., Kvicalova, M., Puzova, T., 2010. American cockroaches prefer four cardinal geomagnetic positions at rest. Behaviour 147, 425–440.

    Article  Google Scholar 

  • Vargas, J.P., Siegel, J.J., Bingman, V.P., 2006. The effects of a changing ambient magnetic field onsingle-unit activity in the homing pigeon hippocampus. Brain Res. Bull. 70, 158–164.

    Article  PubMed  Google Scholar 

  • Walker, M.M., Bitterman, M., 1989. Honeybees can be trained to respond to very small changes in geomagnetic field intensity. J. Exp. Biol. 145, 489–494.

    Google Scholar 

  • Walker, M.M., Diebel, C.E., Haugh, C.V., Pankhurst, P.M., Montgomery, J.C., Green, C.R., 1997. Structure and function of the vertebrate magnetic sense. Nature 390, 371–376.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., Pan, Y., Parsons, S., Walker, M.M., Zhang, S., 2007. Bats respond to polarity of a magnetic field. Proc. Roy. Soc. B 274, 2901–2905.

    Article  Google Scholar 

  • Wegner, R.E., Begall, S., Burda, H., 2006. Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J. Exp. Biol. 209, 4747–4750.

    Article  PubMed  Google Scholar 

  • Wehner, R., Labhart, T., 1970. Perceptionofthegeomagneticfieldinthefly Drosophila melanogaster. Cell. Mol. Life Sci. 26, 967–968.

    Article  CAS  Google Scholar 

  • Westby, G., Partridge, K.J., 1986. Human homing: still no evidence despite geomagnetic controls. J. Exp. Biol. 120, 325.

  • Wiltschko, R., Ritz, T., Stapput, K., Thalau, P., Wiltschko, W., 2005. Two different types of light-dependent responses to magnetic fields in birds. Curr. Biol. 15, 1518–1523.

    Article  CAS  PubMed  Google Scholar 

  • Wiltschko, R., Stapput, K., Ritz, T., Thalau, P., Wiltschko, W., 2007. Magnetoreception in birds: different physical processes for two types of directional responses. HFSP J. 1, 41–48.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wiltschko, R., Stapput, K., Thalau, P., Wiltschko, W., 2010. Directional orientation of birds by the magnetic field under different light conditions. J. R. Soc. Interface 7, 163–177.

    Article  Google Scholar 

  • Wiltschko, R., Wiltschko, W., 1995. Magnetic Orientation in Animals. Springer, Berlin, 297 pp.

    Book  Google Scholar 

  • Wiltschko, R., Wiltschko, W., 2006. Magnetoreceptio. Bioessays 28, 157–168. Wiltschko, W., Wiltschko, R., 1972. Magnetic compass of European robins. Science 176, 62–64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Begall.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begall, S., Malkemper, E.P., Červený, J. et al. Magnetic alignment in mammals and other animals. Mamm Biol 78, 10–20 (2013). https://doi.org/10.1016/j.mambio.2012.05.005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2012.05.005

Keywords

Navigation