Skip to main content
Log in

Low genotyping error rates in non-invasively collected samples from roe deer of the Bavarian Forest National Park

  • Short Communication
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Genetic wildlife monitoring is increasingly carried out on the basis of non-invasively collected samples, whereby the most commonly used DNA sources are skin appendages (hairs, feathers) and faeces. In order to guide decisions regarding future adequate ways to monitor the roe deer (Capreolus capreolus) population of the Bavarian Forest National Park in Germany, we tested these two different types of DNA source materials to compare their suitability for genetic monitoring. We determined the haplotypes (d-loop) of 19 roe deer and genotyped each individual (tissue, hairs, faeces) across 12 microsatellite loci. The amount of missing and erroneous microsatellite alleles obtained from hair and faeces samples, respectively, was estimated based on comparisons with the corresponding tissue sample control. We observed no missing alleles in hair samples, but in fecal samples PCR failed in 30 out of 228 instances (19 individuals x 12 loci), corresponding to a frequency of missing alleles of 13.2% across all loci and individuals. In genotypes generated from hairs erroneous alleles were detected in 2 out of 228 instances (0.9%), while genotypes retrieved from fecal samples displayed erroneous alleles in 6 out of 198 remaining instances (3%). We conclude that both hair and fecal samples are generally well suited for genetic roe deer monitoring, but that fecal sample based analyses require a larger sample size to account for higher PCR failure rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Beja-Pereira, A., Oliveira, R., Alves, P.C., Schwartz, M.K., 2009. Advancing ecological understandings through technological transformations in noninvasive genetics. Mol. Ecol. Resources 9, 1279–1301.

    Article  Google Scholar 

  • Bishop, M.D., Kappes, S.M., Keele, J.W., Stone, R.T., Sunden, S.L.F., Hawkins, G.A., Solinas Toldo, S., Fries, R., Grosz, M.D., Yoo, J., Beattie, C.W., 1994. A genetic linkage map for cattle. Genetics 136, 619–639.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clauss, M., Lason, K., Gehrke, J., Lechner-Doll, M., Fickel, J., Grune, T., Streich, W.J., 2003. Captive roe deer (Capreolus capreolus) select for low amounts of tannic acid but not quebracho: fluctuation of preferences and potential benefits Comp. Biochem. Physiol. B 136, 369–382.

    Article  Google Scholar 

  • Creel, S., Spong, G., Sands, J.L., Rotella, J., Zeigle, J., Joe, L., Murphy, K.M., Smith, D., 2003. Population size estimates in Yellowstone wolves with error-prone nonin-vasive microsatellite genotypes. Mol. Ecol. 12, 2003–2009.

    Article  PubMed  Google Scholar 

  • Constable, J.J., Packer, C., Collins, D.A., Pusey, A.E., 1995. Nuclear DNA from primate dung. Nature 373, 393.

    Article  CAS  PubMed  Google Scholar 

  • Davison, A., Birks, J.D.S., Brookes, R.C., Braithwaite, T.C., Messenger, J.E., 2002. On the origin of faeces: morphological versus molecular methods for surveying rare carnicores from their scats. J. Zool. 257, 141–143.

    Article  Google Scholar 

  • Fickel, J., Hohmann, U., 2006. Amethodological approach for non-invasive sampling for population size estimates in wild boars (Sus scrofa). Eur. J. Wildl. Res. 52, 28–33.

    Article  Google Scholar 

  • Fickel, J., Pitra, C., Joest, B.A., Hofmann, R.R., 1998. A novel method to evaluate the relative tannin-binding capacities of salivary proteins. Comp. Biochem. Physiol. C 122, 225–229.

    Google Scholar 

  • Fickel, J., Reinsch, A., 2000. Microsatellite markers for the European Roe deer (Capre-olus capreolus). Mol. Ecol. 9, 994–995.

    Article  CAS  PubMed  Google Scholar 

  • Fickel, J., Wagener, A., Ludwig, A., 2007. Semen cryopreservation and the conservation of endangered species. Eur. J. Wildl. Res. 53, 81–89.

    Article  Google Scholar 

  • Gagneux, P., Boesch, C., Woodruff, D.S., 1997. Microsatellite scoring errors associated with noninvasive genotyping based on nuclear DNA amplified from shed hair. Mol. Ecol. 6, 861–868.

    Article  CAS  PubMed  Google Scholar 

  • Gaillard, J.M. 1988. Contribution a la dynamique des populations de grands mammifères. L’exemple du chevreuil (Capreolus capreolus). PhD thesis, University of Lyon, Lyon, France.

  • Goossens, B., Waits, L.P., Taberlet, P., 1998. Plucked hair samples as a source of DNA: reliability of dinucleotide microsatellite genotyping. Mol. Ecol. 7, 1237– 1241.

    Article  CAS  PubMed  Google Scholar 

  • Kalinowski, S.T., Taper, M.L., 2006. Maximum likelihood estimationof the frequency of null alleles at microsatellite loci. Cons. Genet. 7, 991–995.

    Article  CAS  Google Scholar 

  • Kalz, B., Jewgenow, K., Fickel, J., 2006. Structure of an otter population in Germany – results of DNA and hormone analyses from faecal samples. Mamm. Biol 71, 321–335.

    Article  Google Scholar 

  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A., McWilliam, H., Valentin, F., Wallace, I.M., Wilm, A., Lopez, R., Thompson, J.D., Gibson, T.J., Higgins, D.G., 2007. CLUSTAL W and CLUSTAL X version 2.0. Bioinformatics 23, 2947–2948.

    Article  CAS  PubMed  Google Scholar 

  • Marshall, T.C., Slate, J., Kruuk, L.E.B., Pemberton, J.M., 1998. Statistical confidence for likelihood-based paternity inference in natural populations. Mol. Ecol. 7, 639–655.

    Article  CAS  PubMed  Google Scholar 

  • Miller, C.R., Joyce, P., Waits, L.P., 2002. Assessing allelic dropout and genotype reliability using maximum likelihood. Genetics 160, 357–366.

    PubMed  PubMed Central  Google Scholar 

  • Partl, E., Szinovatz, V., Reimoser, F., Schweiger-Adler, J., 2002. Forest restoration and browsing impact by roe deer. Forest Ecol. Manage. 159, 87–100.

    Article  Google Scholar 

  • Pielowski, Z., 1984. Some aspects of population structure and longevity of field roe deer. Acta Theriologica 29, 17–33.

    Article  Google Scholar 

  • Rice, W.R., 1989. Analyzing tables of statistical tests. Evolution 43, 223–225.

    Article  PubMed  Google Scholar 

  • Røed, K.H., Midthjell, L., 1998. Microsatellites in reindeer, Rangifer tarandus, and their use in other cervids. Mol. Ecol. 7, 1773–1776.

    Article  PubMed  Google Scholar 

  • Rousset, F., 2008. GENEPOP’007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol. Ecol. Resources 8, 103–106.

    Article  Google Scholar 

  • Ruibal, M., Peakall, R., Claridge, A., Murray, A., Firestone, K., 2010. Advancement to hair-sampling surveys of a medium-sized mammal: DNA-based individual identification and population estimation of a rare Australian marsupial, the spotted-tailed quoll (Dasyurus maculatus). Wildl. Res. 37, 27–38.

    Article  CAS  Google Scholar 

  • Sage, R.B., Hollins, K., Gregory, C.L., Woodburn, M.I.A., Carroll, J.P., 2004. Impact of roe deer Capreolus capreolus browsing on understorey vegetation in small farm woodlands. Wildl. Biol. 10, 115–120.

    Article  Google Scholar 

  • Strandgaard, H., 1972. The roe deer (Capreolus capreolus) population at Kalø and the factors regulating its size. Danish Rev. Game Biol. 7, 1–205.

    Google Scholar 

  • Tamura, K., Dudley, J., Nei, M., Kumar, S., 2007. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    Article  CAS  PubMed  Google Scholar 

  • Thieven, U., Harlizius, B., Simon, D., 1995. Dinucleotide repeat polymorphism at the bovine HAUT1 and HAUT14 loci. Anim. Genet. 26, 123.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTALX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl. Acids Res. 24, 4876–4882.

    Article  Google Scholar 

  • van Ooosterhout, C., Hutchinson, W.F., Wills, D.P.M., Shipley, P., 2004. Micro-Checker: software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 4, 535–538.

    Article  Google Scholar 

  • Vernesi, C., Pecchioli, E., Caramelli, D., Tiedemann, R., Randi, E., Bertorelle, G., 2002. The genetic structure of natural and reintroduced roe deer (Capreolus capreolus) populations in the Alps and central Italy, with reference to the mitochondrial DNA phylogeography of Europe. Mol. Ecol. 11, 1285–1297.

    Article  CAS  PubMed  Google Scholar 

  • Wiehler, J., Tiedemann, R., 1998. Phylogeography of the European roe deer Capreolus capreolus as revealed by sequence analysis of the mitochondrial control region. Acta Theriol. Suppl. 5, 187–197.

    Article  Google Scholar 

  • Wotschikowsky, U., 2010. Ungulates and their management in Germany. In: Apollonio, M., Andersen, R., Putman, R. (Eds.), European Ungulates and their Management in the 21st Century. Cambridge University Press, pp. 201–222.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joerns Fickel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fickel, J., Bubliy, O.A., Brand, J. et al. Low genotyping error rates in non-invasively collected samples from roe deer of the Bavarian Forest National Park. Mamm Biol 77, 67–70 (2012). https://doi.org/10.1016/j.mambio.2011.05.003

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2011.05.003

Keywords

Navigation