Skip to main content
Log in

The efficacy of conifer seeds as major food resources to deer mice (Peromyscus maniculatus) and southern red-backed voles (Myodes gapperi)

  • Original Investigation
  • Published:
Mammalian Biology Aims and scope Submit manuscript

Abstract

Conifer seeds are a component of the diet of many rodents, but it is not known whether these seeds can be used as a major food source by rodents. Investigating this is critical to understanding how individual rodents utilize conifer seeds, and how their populations interact with seed production by coniferous trees. We examined the effects of conifer seed-diets on survival, body condition, food consumption, and gut morphology of deer mice (Peromyscus maniculatus) and southern red-backed voles (Myodes gapperi) in the laboratory. Experiments were conducted for 14 days using control food (laboratory rodent chow) and lodgepole pine (Pinus contorta), white spruce (Picea glauca), and subalpine fir (Abies lasiocarpa) seeds. The nutritional compositions of these seeds were also analyzed. Subalpine fir seeds contained the lowest crude protein content and highest fibre content relative to the other seeds. 60% of voles fed subalpine fir seeds were euthanized prior to the end of the experiment after losing greater than 25% of their initial body mass, whereas all mice survived to the end of the experiment in each group. Body masses of mice fed subalpine fir seeds were lower than those fed control food early in the experiment, but they compensated for this by increasing seed intake over the remainder of the experiment. They also retained more digesta in the caecum, which could increase digestion efficiency of the low-quality seeds. On the other hand, voles did not compensate for the low quality of subalpine fir seeds behaviourally (food intake) or morphologically (gut dimensions), and decreased in body mass dramatically. They also decreased in body mass in the long-term on white spruce seed-diets. It is likely that plant secondary metabolites played a major role in the deterioration of body condition of voles fed subalpine fir and white spruce seeds. These results indicate that conifer seeds are a sufficient food resource for mice, but cannot be used by primarily herbivorous voles as a major/sole food source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott, H.G., 1961. White pine seed consumption by small mammals. J. Forest. 59, 197–201.

    Google Scholar 

  • Abbott, H.G., 1962. Tree seed preferences of mice and voles in the northeast. J. Forest. 60, 97–99.

    Article  Google Scholar 

  • Abbott, H.G., Quink, T.F., 1970. Ecology of eastern white pine seed caches made by small mammals. Ecology 51, 271–278.

    Article  Google Scholar 

  • Alexander, R.R., Shearer, R.C., Shepperd, W.D., 1990. Subalpine fir. In: Burns, R.M., Honkala, B.H. (Tech. coords.), Silvics of North America (Agriculture Handbook 654). US Department of Agriculture, Forest Service, Washington, DC, pp. 92–115.

    Google Scholar 

  • Association of Official Analytical Chemists, 1990. Official Methods of Analysis of AOAC. Association of Official Analytical Chemists International, Washington, DC.

    Google Scholar 

  • Bauce, E., Kumbasli, M., Van Frankenhuyzen, K., Carisey, N., 2006. Interactions among white spruce tannins, Bacillus thuringiensis subsp. kurstaki, and spruce budworm (Lepidoptera: Tortricidae), on larval survival, growth, and development. J. Econ. Entomol. 99, 2038–2047.

    Article  CAS  PubMed  Google Scholar 

  • Belovsky, G.E., 1984. Herbivore optimal foraging: a comparative test of three models. Am. Nat. 124, 97–115.

    Article  Google Scholar 

  • Ben-David, M., McColl, C.J., Boonstra, R., Karels, T.J., 1999. 15N signatures do not reflect body condition in Arctic ground squirrels. Can. J. Zool. 77, 1373–1378.

    Article  Google Scholar 

  • Bennick, A., 2002. Interaction of plant polyphenols with salivary proteins. Crit. Rev. Oral. Biol. Med. 13, 184–196.

    Article  PubMed  Google Scholar 

  • Bergeron, J.M., Jodoin, L., 1987. Defining “high-quality” food resources of herbivores: the case for meadow voles (Microtus pennsylvanicus). Oecologia 71, 510–517.

    Article  CAS  PubMed  Google Scholar 

  • Boonstra, R., Hik, D., Singleton, G.R., Tinnikov, A., 1998. The impact of predator-induced stress on the snowshoe hare cycle. Ecol. Monogr. 79, 371–394.

    Article  Google Scholar 

  • Bozinovic, F., 1995. Nutritional energetics and digestive responses of an herbivorous rodent (Octodon degus) to different levels of dietary fiber. J. Mammal. 76, 627–637.

    Article  Google Scholar 

  • Bozinovic, F., Novoa, F.F., Sabat, P., 1997. Feeding and digestive fiber and tannins by an herbivorous rodent, Octodon degus (Rodentia: Caviomorpha). Comp. Biochem. Physiol. A 118, 625–630.

    Article  CAS  Google Scholar 

  • Cole, F.R., Batzli, G.O., 1979. Nutrition and population dynamics of the prairie vole, Microtus ochrogaster, in central Illinois. J. Anim. Ecol. 48, 455–469.

    Article  Google Scholar 

  • Delguidice, G.D., Seal, U.S., Mech, L.D., 1987. Effects of feeding and fasting on wolf blood and urine characteristics. J. Wildl. Manage. 51, 1–10.

    Article  Google Scholar 

  • del Valle, J.C., Busch, C., Mananes, A.A.L., 2006. Phenotypic plasticity in response to low quality diet in the South American omnivorous rodent Akodon azarae (Rodentia: Sigmodontinae). Comp. Biochem. Physiol. A 145, 397–405.

    Article  CAS  Google Scholar 

  • Derting, T.L., Bogue, B.A., 1993. Responses of the gut to moderate energy demands in a small herbivore (Microtus pennsylvanicus). J. Mammal. 74, 59–68.

    Article  Google Scholar 

  • Despain, D.G., 2001. Dispersal ecology of lodgepole pine (Pine contorta Dougl.) in its native environment as related to Swedish forestry. Forest Ecol. Manage. 141, 59–68.

    Article  Google Scholar 

  • Dietz, B.A., Hagerman, A.E., Barrett, G.W., 1994. Role of condensed tannin on salivary tannin-binding proteins, bioenergetics, and nitrogen digestibility in Microtus pennsylvanicus. J. Mammal. 75, 880–889.

    Article  Google Scholar 

  • Drozdz, A., 1966. Food habits and food supply of rodents in the beech forest. Acta Theriol. 11, 363–384.

    Article  Google Scholar 

  • Duchesne, L.C., Herr, D.G., Wetzel, S., Thompson, I.D., Reader, R., 2000. Effect of seed predation, shade and soil organic matter on the early establishment of eastern white pine and balsam fir seedlings. Forest. Chron. 76, 759–763.

    Article  Google Scholar 

  • Ellis, J.E., Wiens, J.A., Rodell, C.F., Anway, J.C., 1976. A conceptual model of diet selection as an ecosystem process. J. Theor. Biol. 60, 93–108.

    Article  CAS  PubMed  Google Scholar 

  • Everett, R.L., Meeuwig, R.O., Stevens, R., 1978. Deer mouse preference for seeds of commonly planted species, indigenous weed seed, and sacrifice food. J. Range Manage. 31, 70–73.

    Article  Google Scholar 

  • Fitch, H.S., 1954. Seasonal acceptance of bait by small mammals. J. Mammal. 35, 39–47.

    Article  Google Scholar 

  • Freeland, W.J., Janzen, D.H., 1974. Strategies in herbivory by mammals: the role of plant secondary compounds. Am. Nat. 108, 269–289.

    Article  CAS  Google Scholar 

  • Freeland, W.J., Calcott, P.H., Anderson, L.R., 1984. Tannins and saponin: interaction in herbivore diets. Biochem. Syst. Ecol. 13, 189–193.

    Article  Google Scholar 

  • Green, D.A., Millar, J.S., 1987. Changes in gut dimensions and capacity of Peromyscus maniculatus relative to diet quality and energy needs. Can. J. Zool. 65, 2159–2162.

    Article  Google Scholar 

  • Gross, J.E., Wang, Z., Wunder, B.A., 1985. Effects of food quality and energy needs: changes in gut morphology and capacity of Microtus ochrogaster. J. Mammal. 66, 661–667.

    Article  Google Scholar 

  • Hagerman, K.E., Klucker, K.M., 1986. Tannin-protein interactions. In: Harborne, J., Middleton, E. (Eds.), Flavonoids in Biologyand Medicine: Biochemical, Pharmacological, and Structure-Activity Relationships. Liss, New York, pp. 67–76.

    Google Scholar 

  • Hagerman, K.E., Robbins, C.T., 1993. Specificity of tannin-binding salivary proteins relative to diet selection by mammals. Can. J. Zool. 71, 628–633.

    Article  CAS  Google Scholar 

  • Harju, A., Tahvanainen, J., 1994. The effect of silver birch (Betual pendula) powder on physiological performance of field voles (Microtus agrestis). Ann. Zool. Fennici 31, 229–234.

    Google Scholar 

  • Jameson, E.W., 1952. Food of deer mice, Peromyscus maniculatus and P. boylei, in the northern Sierra Nevada, California. J. Mammal. 33, 50–60.

    Article  Google Scholar 

  • Kelly, D., 1994. The evolutionary ecology of mast meeding. Trends Ecol. Evol. 9, 465–470.

    Article  CAS  PubMed  Google Scholar 

  • Koteja, P., 1996. Limits to the energy budget in a rodent, Peromyscus maniculatus: does gut capacity set the limit? Physiol. Zool. 69, 994–1020.

    Article  Google Scholar 

  • Lee, W.B., Houston, D.C., 1995. The rate of change of gut anatomy in voles in relation to diet quality. J. Zool. 236, 341–345.

    Article  Google Scholar 

  • Lewis, C.E., Clark, T.W., Derting, T.L., 2001. Food selection by the white-footed mouse (Peromyscus leucopus) on the basis of energy and protein contents. Can. J. Zool. 79, 562–568.

    Article  CAS  Google Scholar 

  • Lindroth, R.L., Batzli, G.O., 1984. Plant phenolics as chemical defenses: effects of natural phenolics on survival and growth of prairie voles (Microtus ochrogaster). J. Chem. Ecol. 10, 229–244.

    Article  CAS  PubMed  Google Scholar 

  • Lobo, N., Duong, M., Millar, J.S., 2009. Conifer-seed preferences of small mammals. Can. J. Zool. 87, 773–780.

    Article  Google Scholar 

  • Lovegrove, B.G., 2010. The allometry of rodent intestines. J. Comp. Physiol. B 180, 741–755.

    Article  PubMed  Google Scholar 

  • Marquis, R.J., Batzli, G.O., 1989. Influence of chemical factors on palatability of forage to voles. J. Mammal. 70, 503–511.

    Article  Google Scholar 

  • Martell, A.M., 1979. Selection of conifer seeds by deer mice and red-backed voles. Can. J. Forest Res. 9, 201–204.

    Article  Google Scholar 

  • Martell, A.M., 1981. Food habits of southern red-backed voles (Clethrionomys gapperi) in northern Ontario. Can. Field-Nat. 95, 325–328.

    Google Scholar 

  • Martell, A.M., Macaulay, A.L., 1981. Food habits of deer mice (Peromyscus maniculatus) in northern Ontario. Can. Field-Nat. 95, 319–324.

    Google Scholar 

  • Maser, C., Trappe, J.M., Nussbaum, R.A., 1978. Fungal-small mammal interrelationships with emphasis on Oregon coniferous forests. Ecology 59, 799–809.

    Article  Google Scholar 

  • McAdam, A.G., Millar, J.S., 1999. Dietary protein constraint on age at maturity: an experimental test with wild deer mice. J. Anim. Ecol. 68, 733–740.

    Article  Google Scholar 

  • Millar, J.S., Innes, D.G., Loewen, V.A., 1985. Habitat use by non-hibernating small mammals of the Kananaskis Valley, Alberta. Can. Field-Nat. 99, 196–204.

    Google Scholar 

  • Nespolo, R.F., Bacigalupe, L.D., Sabat, P., Bozinovic, F., 2002. Interplay among energy metabolism, organ mass and digestive enzyme activity in the mouse-opposum Thylamys elegans: the role of thermal acclimation. J. Exp. Biol. 205, 2697–2703.

    PubMed  Google Scholar 

  • Norrie, M.B., Millar, J.S., 1990. Food resources and reproduction in four microtine rodents. Can. J. Zool. 68, 641–650.

    Article  Google Scholar 

  • Penry, D.L., Jumars, P.A., 1987. Modeling animal guts as chemical reactors. Am. Nat. 129, 69–96.

    Article  CAS  Google Scholar 

  • Radvanyi, A., 1970. Small mammals and regeneration of white spruce forests in western Alberta. Ecology 51, 1102–1105.

    Article  Google Scholar 

  • Radvanyi, A., 1971. Lodgepole pine seed depredation by small mammals in western Alberta. Forest Sci. 17, 213–217.

    Google Scholar 

  • Schieck, J.O., Millar, J.S., 1985. Alimentary track measurements as indicators of diets of small mammals. Mammalia 49, 93–104.

    Article  Google Scholar 

  • Schlesinger, W.H., 1975. Toxic foods and vole cycles: additional data. Am. Nat. 110, 315–317.

    Article  Google Scholar 

  • Schreiner, M., Bauer, E.M., Kollmann, J., 2000. Reducing predation of conifer seeds by clear cutting Rubus fruticosus agg. in two montane forest stands. Forest Ecol. Manage. 126, 281–290.

    Article  Google Scholar 

  • Seal, U.S., Hoskinson, R.L., 1978. Metabolic indicators of habitat condition and capture stress in pronghorns. J. Wildl. Manage. 58, 755–763.

    Article  Google Scholar 

  • Shaw, E.W., 1954. Direct seeding in the Pacific northwest. J. Forest. 52, 827–828.

    Google Scholar 

  • Shimada, T., Saitoh, T., 2003. Negative effects of acorns on the wood mouse Apodemus speciosus. Popul. Ecol. 45, 7–17.

    Article  Google Scholar 

  • Shimada, T., Saitoh, T., 2006. Re-evaluation of the relationship between rodent populations and acorn masting: a review from the aspect of nutrients and defensive chemicals in acorns. Popul. Ecol. 48, 341–352.

    Article  Google Scholar 

  • Shimada, T., Saitoh, T., Sasaki, E., Nishitani, Y., Osawa, R., 2006. Role of tannin-binding salivary proteins and tannase-producing bacteria in the acclimation of the Japanese wood mouse to acorn tannins. J. Chem. Ecol. 32, 1165–1180.

    Article  CAS  PubMed  Google Scholar 

  • Sibly, R.M., 1981. Strategies of digestion and defecation. In: Townsend, E.R., Calow, R. (Eds.), Physiological Ecology. Blackwell, Oxford, pp. 109–139.

    Google Scholar 

  • Silvertown, J.W., 1980. The evolutionary ecology of mast seeding in trees. Biol. J. Linn. Soc. 14, 235–250.

    Article  Google Scholar 

  • Spinks, A.C., Perrin, M.R., 1995. The digestive tract of Macroscelides proboscideus and the effect of diet quality on gut dimensions. S. Afr. J. Zool. 30, 33–36.

    Google Scholar 

  • SPSS Inc., 2007. SPSS 16.0 for Windows. SPSS Inc., Chicago.

    Google Scholar 

  • Undersander, D., Mertens, D.R., Thiex, N., 1993. Forage Analyses Procedures. National Forage Testing Association, Omaha, NE.

    Google Scholar 

  • Vickery, W.L., 1984. Optimal diet models and rodent food consumption. Anim. Behav. 32, 340–348.

    Article  Google Scholar 

  • Vickery, W.L., Daoust, J.L., El Wartiti, A., Peltier, J., 1994. The effect of energy and protein content on food choice by deer mice, Peromyscus maniculatus (Rodentia). Anim. Behav. 47, 55–64.

    Article  Google Scholar 

  • Whitaker, J.D., 1966. Food of Mus musculus, Peromyscus maniculatus bairdi and Peromyscus leucopus in Vigo County, Indiana. J. Mammal. 47, 473–486.

    Article  Google Scholar 

  • Williams, O., 1959. Food habits of the deer mouse. J. Mammal. 40, 415–419.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikhil Lobo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lobo, N., Millar, J.S. The efficacy of conifer seeds as major food resources to deer mice (Peromyscus maniculatus) and southern red-backed voles (Myodes gapperi). Mamm Biol 76, 274–284 (2011). https://doi.org/10.1016/j.mambio.2010.11.004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.mambio.2010.11.004

Keywords

Navigation