Skip to main content

Advertisement

Log in

Neurophysiological Monitoring in Radiofrequency Ablation of Spinal Osteoid Osteoma With a Progressive Time and Temperature Protocol in Children

  • Case Series
  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study Design

Retrospective. Level IV Evidence.

Objective

To assess the utility of intraoperative neurophysiological monitoring (IONM) to detect and eventually prevent impending neurovascular damage during computed tomography (CT)-guided radiofrequency ablation (RFA) of spinal osteoid osteoma (OO) in children.

Summary and Background Data

To our knowledge, this is the first case series of spinal OO in pediatric patients treated at a single center employing IONM during RFA.

Methods

This is a retrospective study of seven consecutive patients (3 girls and 4 boys, mean age: 9 years 4 months) with imaging and clinical signs compatible with spinal OO who underwent CT-guided RFA, under general anesthesia, and IONM in a single center between 2011 and 2015. Before the RFA procedure, a CT-guided percutaneous biopsy of the nidus was performed in the same setting. RFA was divided into four cycles of increasing time and temperature and performed under IONM in every patient.

Results

Two patients had lesions located in the thoracic spine and five patients had lumbar involvement. The RFA technical and clinical success was 85.7%. Six patients presented with reversible neurophysiological changes either during biopsy needle positioning or RFA cycles. In the remaining case, as IONM changes did not improve after several minutes of neuroprotective hypertension, the procedure was interrupted. Neither neurologic nor vascular complications were observed after RFA treatment. In only one biopsy sample, OO was confirmed by histopathologic studies.

Conclusion

CT-guided RFA is an accepted minimally invasive technique for the treatment of spinal OO in children. IONM may be a helpful tool that requires minimal additional time and provides feedback on the state of the spinal cord and nerves at risk during the procedure. We promote the use of IONM during these procedures to detect and possibly prevent impending neurologic damage.

Level of Evidence

Level IV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergstrand H. Über eine eigenartige, wahrscheinlich bisher nicht beschriebene osteoblastische Krankheit in den langen Knochen der Hand und des Fusses. Acta Radiol 1930;11:596.

    Article  Google Scholar 

  2. Jaffe H. A benign osteoblastic tumor composed of osteoid and atypical bone. Arch Surg 1935;31:709–28.

    Article  Google Scholar 

  3. Rehnitz C, Sprengel SD, Lehnerb B, et al. CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow up in 77 patients. Eur J Radiol 2012;81:3426–34.

    Article  PubMed  Google Scholar 

  4. Hadjipavlou AG, Tzermiadianos MN, Kakavelakis KN, et al. Percutaneous core excision and radiofrequency thermo-coagulation for the ablation of osteoid osteoma of the spine. Eur Spine J 2009;18:345–51.

    Article  PubMed  Google Scholar 

  5. Weber MA, Sprengel SD, Omlor GW, et al. Clinical long-term outcome, technical success, and cost analysis of radiofrequency ablation for the treatment of osteoblastomas and spinal osteoid osteomas in comparison to open surgical resection. Skeletal Radiol 2015;44:981–93.

    Article  PubMed  Google Scholar 

  6. Morassi LG, Kokkinis K, Evangelopoulos DS, et al. Percutaneous radiofrequency ablation of spinal osteoid osteoma under CT guidance. Br J Radiol 2014;87:20140003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mylona S, Patsoura S, Galani P, et al. Osteoid osteomas in common and in technically challenging locations treated with computed tomography-guided percutaneous radiofrequency ablation. Skeletal Radiol 2010;39:443–9.

    Article  PubMed  Google Scholar 

  8. Tello CA, Bersusky E, Noel M, et al. Osteoma Osteoide en la Columna Pediátrica. Revista de la Asociación Argentina de Ortopedia y Traumatología 1995;60:111–25.

    Google Scholar 

  9. Rybak LD, Gangi A, Buy X, et al. Thermal ablation of spinal osteoid osteomas close to neural elements: technical considerations. AJR Am J Roentgenol 2010;195:W293–8.

    Article  PubMed  Google Scholar 

  10. Ozaki T, Liljenqvist U, Hillmann A. Osteoid osteomas and osteoblastoma of the spine: experiences with 22 patients. Clin Orthop Relat Res 2002;397:394–402.

    Article  Google Scholar 

  11. Vanderschueren GM, Obermann WR, Dijkstra SP, et al. Radiofrequency ablation of spinal osteoid osteoma. Clinical outcome. Spine 2009;34:901–3.

    Article  PubMed  Google Scholar 

  12. Rosenthal DI, Hornicek FJ, Torriani M. Osteoid osteoma: percutaneous treatment with radiofrequency energy. Radiology 2003;229:171–5.

    Article  PubMed  Google Scholar 

  13. Cantwell CP, O’Byrne J, Eustace S. Radiofrequency ablation of osteoid osteoma with cooled probes and impedance-control energy delivery. AJR Am J Roentgenol 2006;186:S244–8.

    Article  PubMed  Google Scholar 

  14. Wortler K, Vestring T, Boettner F, et al. Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 2001;2:717–22.

    Article  Google Scholar 

  15. Rosenthal DI, Springfield DS, Gebhardt MC, et al. Osteoid osteoma: percutaneous radio-frequency ablation. Radiology 1995;197:451–4.

    Article  CAS  PubMed  Google Scholar 

  16. Lindner NJ, Scarborough M, Ciccarelli JM, et al. CT controlled thermocoagulation of osteoid osteoma in comparison with traditional methods. Z OrthopIhre Grenzgeb 1997;135:522–7.

    Article  CAS  Google Scholar 

  17. Theumann N, Hauser P, Schmidt S, et al. Osteoid osteoma and radiofrequency. Rev Med Suisse 2005;1:2989–94.

    CAS  PubMed  Google Scholar 

  18. Owen JW, Bridwell KH, Gilula LA. Management of complications following radiofrequency ablation of a pedicle osteoid osteoma. Am J Orthop 2014;43:E124–8.

    PubMed  Google Scholar 

  19. Dupuy DE, Hong R, Oliver B, et al. Radiofrequency ablation of spinal tumors: temperature distribution in the spinal canal. AJR Am J Roentgenol 2000;175:1263–6.

    Article  CAS  PubMed  Google Scholar 

  20. Brodkey JS, Miyazaki Y, Ervin FR, et al. Reversible heat lesions with radiofrequency current. A method of stereotactic localization. J Neurosurg 1964;21:49–53.

    Article  CAS  PubMed  Google Scholar 

  21. Bunch TJ, Bruce GK, Mahapatra S, et al. Mechanisms of phrenic nerve injury during radiofrequency ablation at the pulmonary vein orifice. J Cardiovasc Electrophysiol 2005;16:1318–25.

    Article  PubMed  Google Scholar 

  22. Adachi A, Kaminou T, Ogawa T. Heat distribution in the spinal canal during radiofrequency ablation for vertebral lesions: study in swine. Radiology 2008;247:374–80.

    Article  PubMed  Google Scholar 

  23. Maarrawi J, Kobaiter-Maarrawi S, Ghanem I, et al. Pathological effects and motor response threshold changes following radiofrequency application at various distances from the L-5 nerve root: an experimental study. Neurosurg Sine 2011;15:285–91.

    Google Scholar 

  24. Marshall RH, Avila EK, Solomon SB, et al. Feasibility of intraoperative nerve monitoring in preventing thermal damage to the “nerve at risk” during image-guided ablation of tumors. Cardiovasc Intervent Radiol 2016;39:875–84.

    Article  PubMed  Google Scholar 

  25. Laus M, Albisinni U, Alfonso C, et al. Osteoid osteoma of the cervical spine: surgical treatment or percutaneous radiofrequency coagulation? Eur Spine J 2007;16:2078–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rosenthal DI, Alexander A, Rosenberg AE, et al. Ablation of osteoid osteomas with a percutaneously placed electrode: a new procedure. Radiology 1992;183:29–33.

    Article  CAS  PubMed  Google Scholar 

  27. Kneisl JS, Simon MA. Medical management compared with operative treatment for osteoid osteoma. J Bone Joint Surg Am 1992;74–A:179–85.

    Article  Google Scholar 

  28. Barsa P, Suchomel P, Lukás R, et al. Percutaneous CT-guided radiofrequency ablation in spinal osteoid osteoma treatment. Acta Chir Orthop Traumatol Cech 2007;74:401–5.

    CAS  PubMed  Google Scholar 

  29. Fehlings MG, Brodke DS, Norvell DC, et al. The evidence for intraoperative neurophysiological monitoring in spine surgery: does it make a difference? Spine (Phila Pa 1976) 2010;35(9 Suppl):S37–46.

    Article  Google Scholar 

  30. Gonzalez AA, Jeyanandarajan D, Hansen C, et al. Intraoperative neurophysiological monitoring during spine surgery: a review. Neurosurg Focus 2009;27:E6.

    Article  PubMed  Google Scholar 

  31. Sutter M, Eggspuehler A, Grob D, et al. The validity of multimodal intraoperative monitoring (MIOM) in surgery of 109 spine and spinal cord tumors. Eur Spine J 2007;16(Suppl 2):S197–208.

    Article  PubMed  Google Scholar 

  32. Nuwer MR, Emerson RG, Galloway G, et al. Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology; American Clinical Neurophysiology Society. Evidence-based guideline update: intraoperative spinal monitoring with somatosensory and transcranial electrical motor evoked potentials: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology 2012;78:585–9.

    Article  CAS  PubMed  Google Scholar 

  33. Cove JA, Taminiau AH, Obermann WR, et al. Osteoid osteoma of the spine treated with percutaneous computed tomography guided thermocoagulation. Spine 2000;25:1283–6.

    Article  CAS  PubMed  Google Scholar 

  34. Samaha EI, Ghanem IB, Moussa RF, et al. Percutaneous radiofrequency coagulation of osteoid osteoma of the neural spine ring. Eur Spine J 2005;14:702–5.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Sutphen SA, Murakami JW. Radiofrequency ablation of a cervical osteoid osteoma: a trans-thyroid approach. Pediatr Radiol 2007;37:83–5.

    Article  PubMed  Google Scholar 

  36. Nour SG, Aschoff AJ, Mitchell I, et al. MR imaging-guided radiofrequency thermal ablation of the lumbar vertebrae in porcine models. Radiology 2002;224:452–62.

    Article  PubMed  Google Scholar 

  37. Boss A, Clasen S, Kuczyk M, et al. Thermal damage of the genitofemoral nerve due to radiofrequency ablation of renal cell carcinoma: a potentially avoidable complication. AJR Am J Roentgenol 2005;185:1627–31.

    Article  PubMed  Google Scholar 

  38. Wang H, Littrup PJ, Duan Y, et al. Thoracic masses treated with percutaneous cryotherapy: initial experience with more than 200 procedures. Radiology 2005;235:289–98.

    Article  PubMed  Google Scholar 

  39. Hiraki T, Gobara H, Mimura H, et al. Brachial nerve injury caused by percutaneous radiofrequency ablation of apical lung cancer: a report of four cases. J Vasc Interv Radiol 2010;21:1129–33.

    Article  PubMed  Google Scholar 

  40. Matsui Y, Hiraki T, Gobara H, et al. Phrenic nerve injury after radiofrequency ablation of lung tumors: retrospective evaluation of the incidence and risk factors. J Vasc Interv Radiol 2012;23:780–5.

    Article  PubMed  Google Scholar 

  41. Atwell TD, Carter RE, Schmit GD, et al. Complications following 573 percutaneous renal radiofrequencies and cryoablation procedures. J Vasc Interv Radiol 2012;23:48–54.

    Article  PubMed  Google Scholar 

  42. Coskun DJ, Gilchrist J, Dupuy D. Lumbosacral radiculopathy following radiofrequency ablation therapy. Muscle Nerve 2003;28:754–6.

    Article  PubMed  Google Scholar 

  43. Kashima M, Yamakado K, Takaki H, et al. Complications after 1000 lung radiofrequency ablation sessions in 420 patients: a single center’s experiences. AJR Am J Roentgenol 2011;197:W576–80.

    Article  PubMed  Google Scholar 

  44. Kumar RS, Gopinath M. A rare cause of foot drop after radiofrequency ablation for varicose veins: case report and review of the literature. Neurol India 2010;58:303–5.

    Article  PubMed  Google Scholar 

  45. Munk PL, Rashid F, Heran MK, et al. Combined cementoplasty and radiofrequency ablation in the treatment of painful neoplastic lesions of bone. J Vasc Interv Radiol 2009;20:903–11.

    Article  PubMed  Google Scholar 

  46. Rutkove SB. Effects of temperature on neuromuscular electrophysiology. Muscle Nerve 2001;24:867–82.

    Article  CAS  PubMed  Google Scholar 

  47. Mazoyer JF, Kohler R, Bossard D. Osteoid osteoma: CT-guided percutaneous treatment. Radiology 1991;181:269–71.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariano A. Nöel MD.

Additional information

Author disclosures

MAN (none); MJS (none); SS (none); WIAF (none); CAT (grants from Biomet, during the conduct of the study); EG (none); RGR (none); MET (none); ESB (none); LP (none).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nöel, M.A., Segura, M.J., Sierre, S. et al. Neurophysiological Monitoring in Radiofrequency Ablation of Spinal Osteoid Osteoma With a Progressive Time and Temperature Protocol in Children. Spine Deform 5, 351–359 (2017). https://doi.org/10.1016/j.jspd.2017.03.001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jspd.2017.03.001

Keywords

Navigation