Skip to main content

Advertisement

Log in

Stability and Spine Pedicle Screws Fixation Strength—A Comparative Study of Bone Density and Insertion Angle

  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study Design

Analysis of insertion angle and bone density on the pedicle screw fixation strength with a novel testing protocol that accounts for the articular processes.

Objective

To analyze the relationship between pedicle screw fixation strength and bone mineral density for different transverse screw insertion angles.

Summary of Background Data

The stability of the screw can become compromised by demineralization of the vertebral bone due to diseases such as osteoporosis. A weakening of the bone-screw interface, and therefore, a decrease in the fixation strength of the screw, leads to an increased probability of instrument failure, most commonly by screw loosening or screw pullout.

Methods

Using the ASTM F543 as reference, we performed pullout tests with an Instron mechanical testing machine of a posterior fixation construct mimicking two pedicle screws connected at a distance of 40 mm as suggested by the ASTM F1717 on four densities of polyurethane foam in accordance with the ASTM F1839-08 standard to simulate bone densities ranging from osteoporotic (5 pcf) to higher than normal (20 pcf) in four transverse insertion angles.

Results

A linear regression with two independent variables was found to be Y = −354.8812 + 91.8102 × X1 − 6.8747 × X2 (X1 = density [pcf], X2 = angle [degrees]), with a correlation coefficient of 0.95 for all the experimental data.

Conclusions

Pedicle screw insertion angle and bone density are critical to pullout strength. However, in osteoporotic bone, the insertion angle has only a marginal influence on pullout strength.

Level of Evidence

V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coe JD, Warden KE, Herzig MA, et al. Influence of bone mineral density on the fixation of thoracolumbar implants: a comparative study of transpedicular screws, laminar hooks, and spinous process wires. Spine (Phila Pa 1976) 1990;15:902–7.

    Article  CAS  Google Scholar 

  2. Katonis P, Christoforakis J, Kontakis G, et al. Complications and problems related to pedicle screw fixation of the spine. Clin Orthop Relat Res 2003;411:86–94.

    Article  Google Scholar 

  3. Ponnusamy KE, Iyer S, Gupta G, et al. Instrumentation of the osteoporotic spine: Biomechanical and clinical considerations. Spine J 2011;11:54–63.

    Article  Google Scholar 

  4. DeWald CJ, Stanley T. Instrumentation-related complications of multilevel fusions for adult spinal deformity patients over age 65: surgical considerations and treatment options in patients with poor bone quality. Spine (Phila Pa 1976) 2006;31:S144–51.

    Article  Google Scholar 

  5. Okuyama K, Abe E, Suzuki T, et al. Influence of bone mineral density on pedicle screw fixation: a study of pedicle screw fixation augmenting posterior lumbar interbody fusion in elderly patients. Spine J 2001;1:402–7.

    Article  CAS  Google Scholar 

  6. Pihlajämaki H, Myllynen P, Böstman O. Complications of transpedicular lumbosacral fixation for non-traumatic disorders. J Bone Joint Surg Br 1997;79:183–9.

    Article  Google Scholar 

  7. Glassman SD, Alegre GM. Adult spinal deformity in the osteoporotic spine: options and pitfalls. Instr Course Lect 2003;52:579–88.

    PubMed  Google Scholar 

  8. Heinemann DF. Osteoporosis. An overview of the National Osteoporosis Foundation clinical practice guide. Geriatrics 2000;55:31–6. quiz 39.

    CAS  PubMed  Google Scholar 

  9. Sandén B, Olerud C, Petrén-Mallmin M, et al. The significance of radiolucent zones surrounding pedicle screws. J Bone Jt Surg 2004;86:457–61.

    Article  Google Scholar 

  10. Wittenberg RH, Shea M, Swartz DE, et al. Importance of bone mineral density in instrumented spine fusions. Spine (Phila Pa 1976) 1991;16:647–52.

    Article  CAS  Google Scholar 

  11. Yamagata M, Kitahara H, Minami S, et al. Mechanical stability of the pedicle screw fixation systems for the lumbar spine. Spine (Phila Pa 1976) 1992;17:S51–4.

    Article  CAS  Google Scholar 

  12. Pfeiffer M, Gilbertson LG, Goel VK, et al. Effect of specimen fixation method on pullout tests of pedicle screws. Spine (Phila Pa 1976) 1996;21:1037–44.

    Article  CAS  Google Scholar 

  13. Liljenqvist U, Hackenberg L, Link T, et al. Pullout strength of pedicle screws versus pedicle and laminar hooks. Acta Orthop Belg 2001;67:3–9.

    Google Scholar 

  14. Hackenberg L, Link T, Liljenqvist U. Axial and tangential fixation strength of pedicle screws versus hooks in the thoracic spine in relation to bone mineral density. Spine (Phila Pa 1976) 2002;27:937–42.

    Article  Google Scholar 

  15. Hsu C, Chao C, Wang J. Increase of pullout strength of spinal pedicle screws with conical core: biomechanical tests and finite element analyses. J Orthop Res 2005;23:788–94.

    Article  Google Scholar 

  16. Kim YY, Choi WS, Rhyu KW. Assessment of pedicle screw pullout strength based on various screw designs and bone densities—an ex vivo biomechanical study. Spine J 2012;12:164–8.

    Article  Google Scholar 

  17. Robert KQ, Chandler R, Baratta RV, et al. The effect of divergent screw placement on the initial strength of plate-to-bone fixation. J Trauma 2003;55:1139–44.

    Article  Google Scholar 

  18. Kilinçer C, Inceoglu S, Sohn MJ, et al. Effects of angle and laminectomy on triangulated pedicle screws. J Clin Neurosci 2007;14:1186–91.

    Article  Google Scholar 

  19. Patel PSD, Shepherd DET, Hukins DWL. The effect of screw insertion angle and thread type on the pullout strength of bone screws in normal and osteoporotic cancellous bone models. Med Eng Phys 2010;32:822–8.

    Article  Google Scholar 

  20. Inceoğlu S, Montgomery WH, St Clair S, et al. Pedicle screw insertion angle and pullout strength: comparison of 2 proposed strategies. J Neurosurg Spine 2011;14:670–6.

    Article  Google Scholar 

  21. Lehman RA, Polly DW, Kuklo TR, et al. Straight-forward versus anatomic trajectory technique of thoracic pedicle screw fixation: a biomechanical analysis. Spine (Phila Pa 1976) 2003;28:2058–65.

    Article  Google Scholar 

  22. Zindrick MR, Wiltse LL, Doornik A, et al. Analysis of the morphometric characteristics of the thoracic and lumbar pedicles. Spine (Phila Pa 1976) 1987;12:160–6.

    Article  CAS  Google Scholar 

  23. Lien SB, Liou NH, Wu SS. Analysis of anatomic morphometry of the pedicles and the safe zone for through-pedicle procedures in the thoracic and lumbar spine. Eur Spine J 2007;16:1215–22.

    Article  Google Scholar 

  24. Fennell VS, Palejwala S, Skoch J, et al. Freehand thoracic pedicle screw technique using a uniform entry point and sagittal trajectory for all levels: preliminary clinical experience. J Neurosurg Spine 2014;21:778–84.

    Article  Google Scholar 

  25. Patel MM, Gohil DV, Singel TC. Orientation of superior articular facets from C3 to S1 vertebrae. J Anat Soc India 2004;53:35–9.

    Google Scholar 

  26. Panjabi MM, Oxland T, Takata K, et al. Articular facets of the human spine. Quantitative three-dimensional anatomy. Spine (Phila Pa 1976) 1993;18:1298–310.

    Article  CAS  Google Scholar 

  27. Berry JL, Moran JM, Berg WS, et al. A morphometric study of human lumbar and selected thoracic vertebrae. Spine (Phila Pa 1976) 1987;12:362–7.

    Article  CAS  Google Scholar 

  28. Panjabi MM, Takata K, Goel V, et al. Thoracic human vertebrae. Quantitative three-dimensional anatomy. Spine (Phila Pa 1976) 1991;16:888–901.

    Article  CAS  Google Scholar 

  29. Inceoglu S, McLain RF, Cayli S, et al. Stress relaxation of bone significantly affects the pull-out behavior of pedicle screws. J Orthop Res 2004;22:1243–7.

    Article  Google Scholar 

  30. Mehta H, Santos E, Ledonio C, et al. Biomechanical analysis of pedicle screw thread differential design in an osteoporotic cadaver model. Clin Biomech 2012;27:234–40.

    Article  CAS  Google Scholar 

  31. Inceoglu S, Ferrara L, McLain RF. Pedicle screw fixation strength: pullout versus insertional torque. Spine J 2004;4:513–8.

    Article  Google Scholar 

  32. Chatzistergos PE, Magnissalis EA, Kourkoulis SK. A parametric study of cylindrical pedicle screw design implications on the pullout performance using an experimentally validated finite-element model. Med Eng Phys 2010;32:145–54.

    Article  Google Scholar 

  33. Chen LH, Tai CL, Lai PL, et al. Pullout strength for cannulated pedicle screws with bone cement augmentation in severely osteoporotic bone: influences of radial hole and pilot hole tapping. Clin Biomech (Bristol, Avon) 2009;24:613–8.

    Article  Google Scholar 

  34. Rajasekaran S, Vidyadhara S, Ramesh P, et al. Randomized clinical study to compare the accuracy of navigated and non-navigated thoracic pedicle screws in deformity correction surgeries. Spine (Phila Pa 1976) 2007;32:E56–64.

    Article  CAS  Google Scholar 

  35. Lonjon N, Chan-Seng E, Costalat V, et al. Robot-assisted spine surgery: feasibility study through a prospective case-matched analysis. Eur Spine J 2015. https://doi.org/10.1007/s00586-015-3758-8.

    Article  Google Scholar 

  36. Lieberman IH, Togawa D, Kayanja MM, et al. Bone-mounted miniature robotic guidance for pedicle screw and translaminar facet screw placement, I: technical development and a test case result. Neurosurgery 2006;59:641–50.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farid Amirouche PhD.

Additional information

Author disclosures

FA (none); GFS (none); BPM (none).

The work was partially supported by Aurelio M. Caccomo Family Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amirouche, F., Solitro, G.F. & Magnan, B.P. Stability and Spine Pedicle Screws Fixation Strength—A Comparative Study of Bone Density and Insertion Angle. Spine Deform 4, 261–267 (2016). https://doi.org/10.1016/j.jspd.2015.12.008

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jspd.2015.12.008

Keywords

Navigation