Skip to main content

Advertisement

Log in

Braces Optimized With Computer-Assisted Design and Simulations Are Lighter, More Comfortable, and More Efficient Than Plaster-Cast Braces for the Treatment of Adolescent Idiopathic Scoliosis

  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study Design

Feasibility study to compare the effectiveness of 2 brace design and fabrication methods for treatment of adolescent idiopathic scoliosis: a standard plaster-cast method and a computational method combining computer-aided design and fabrication and finite element simulation.

Objectives

To improve brace design using a new brace design method.

Summary of Background Data

Initial in-brace correction and patient’s compliance to treatment are important factors for brace effi- ciency. Negative cosmetic appearance and functional discomfort resulting from pressure points, humidity, and restriction of movement can cause poor compliance with the prescribed wearing schedule.

Methods

A total of 15 consecutive patients with brace prescription were recruited. Two braces were designed and fabricated for each patient: a standard thoracolumbo-sacral orthosis brace fabricated using plaster-cast method and an improved brace for comfort (NewBrace) fabricated using a computational method combining computer-aided design and fabrication software (Rodin4D) and a simulation platform. Three-dimensional reconstructions of the torso and the trunk skeleton were used to create a personalized finite element model, which was used for brace design and predict correction. Simulated pressures on the torso and distance between the brace and patient’s skin were used to remove ineffective brace material situated at more than 6 mm from the patient’s skin. Biplanar radiographs of the patient wearing each brace were taken to compare their effectiveness. Patients filled out a questionnaire to compare their comfort.

Results

NewBraces were 61% thinner and had 32% less material than standard braces with equivalent correction. NewBraces were more comfortable (11 of 15 patients) or equivalent to (4 of 15 cases) standard braces. Simulated correction was simulated within 5° compared with in-brace results.

Conclusions

This study demonstrates the feasibility of designing lighter and more comfortable braces with correction equivalent to standard braces. This design platform has the potential to further improve brace correction efficiency and its compliance. © 2014 Scoliosis Research Society.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lou E, Hill DL, Raso JV, et al. Smart orthosis for the treatment of adolescent idiopathic scoliosis. Med Biol Eng Comput 2005;43:746–50.

    Article  CAS  PubMed  Google Scholar 

  2. Dolan LA, Weinstein SL. Surgical rates after observation and bracing for adolescent idiopathic scoliosis: an evidence-based review. Spine (Phila Pa 1976) 2007;32:S91–100.

    Article  Google Scholar 

  3. Dickson RA. Spinal deformity-adolescent idiopathic scoliosis: nonoperative treatment. Spine (Phila Pa 1976) 1999;24:2601–6.

    Article  CAS  Google Scholar 

  4. Rowe DE, Bernstein SM, Riddick MF, et al. A meta-analysis of the efficacy of non operative treatments for idiopathic scoliosis. J Bone Joint Surg Am 1997;79:664–74.

    Article  CAS  PubMed  Google Scholar 

  5. Nachemson AL, Peterson LE. Effectiveness of treatment with brace in girls who have adolescent idiopathic scoliosis: a prospective, controlled study based on data from the Brace Study of the Scoliosis Research Society. J Bone Joint Surg Am 1995;77:815–22.

    Article  CAS  PubMed  Google Scholar 

  6. Castro F. Adolescent idiopathic scoliosis, bracing, and the Hueter-Volkmann principle. Spine (Phila Pa 1976) 2003;3:182–5.

    Google Scholar 

  7. Negrini S, Atanasio S, Fusco C, et al. Effectiveness of complete conservative treatment for adolescent idiopathic scoliosis (bracing and exercises) based on SOSORT management criteria: results according to the SRS criteria for bracing studies-SOSORT Award 2009 Winner. Scoliosis 2009;4:19.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Weinstein SL, Dolan LA, Wright JG, et al. Effects of bracing in ad olescents with idiopathic scoliosis. N Engl J Med 2014;370:681.

    Article  PubMed  CAS  Google Scholar 

  9. Clin J, Aubin CE, Sangole A, et al. Correlation between immediate in-brace correction and biomechanical effectiveness of brace treatment in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2010;35:1706–13.

    Article  Google Scholar 

  10. Landauer F, Wimmer C, Behensky H. Estimating the final outcome of brace treatment for idiopathic thoracic scoliosis at 6-month follow-up. Pediatr Rehabil 2003;6:201–7.

    Article  PubMed  Google Scholar 

  11. Katz DE, Durrani AA. Factors that influence outcome in bracing large curves in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2001;26:2354–61.

    Article  CAS  Google Scholar 

  12. Negrini S, Aulisa AG, Aulisa L, et al. 2011 SOSORT guidelines: orthopaedic and rehabilitation treatment of idiopathic scoliosis during growth. Scoliosis 2012;7:1–35.

    Article  Google Scholar 

  13. Nault ML, Parent S, Phan P, et al. A modified Risser grading system predicts the curve acceleration phase of female adolescent idiopathic scoliosis. J Bone Joint Surg Am 2010;92:1073–81.

    Article  PubMed  Google Scholar 

  14. Nicholson GP, Ferguson-Pell MW, Smith K, et al. The objective measurement of spinal orthosis use for the treatment of adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2003;28:2243–51.

    Article  CAS  Google Scholar 

  15. Schiller JR, Thakur NA, Eberson CP. Brace management in adolescent idiopathic scoliosis. Clin Orthop Relat Res 2009;468:670–8.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Fayssoux RS, Cho RH, Herman MJ. A history of bracing for idiopathic scoliosis in North America. Clin Orthop Relat Res 2010;468:654–64.

    Article  PubMed  Google Scholar 

  17. Lonstein JE, Winter RB. The Milwaukee brace for the treatment of adolescent idiopathic scoliosis: a review of one thousand and twenty patients. J Bone Joint Surg Am 1994;76:1207–21.

    Article  CAS  PubMed  Google Scholar 

  18. Wiley JW, Thomson JD, Mitchell TM. Effectiveness of the Boston brace in treatment of large curves in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2000;25:2326–32.

    Article  CAS  Google Scholar 

  19. Harvey R, Gavin T, Patwardhan A. A reliable and accurate method for measuring orthosis wearing time. Spine (Phila Pa 1976) 2002;27:211–4.

    Article  Google Scholar 

  20. Takemitsu M, Bowen JR, Rahman T, et al. Compliance monitoring of brace treatment for patients with idiopathic scoliosis. Spine (Phila Pa 1976) 2004;29:2070–4.

    Article  Google Scholar 

  21. Rahman T, Borkhuu B, Littleton AG, et al. Electronic monitoring of scoliosis brace wear compliance. J Child Orthop 2010;4:343–7.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Lou E, Hill DL, Raso JV. A wireless sensor network system to determine biomechanics of spinal braces during daily living. Med Biol Eng Comput 2010;48:235–43.

    Article  PubMed  Google Scholar 

  23. Rahman T, Bowen JR, Takemitsu M, et al. The association between brace compliance and outcome for patients with idiopathic scoliosis. J Pediatr Orthop 2005;25:420–2.

    Article  PubMed  Google Scholar 

  24. Katz DE, Richards BS. A comparison between the Boston brace and the Charleston bending brace in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 1997;22:1302–12.

    Article  CAS  Google Scholar 

  25. Katz DE, Herring JA, Browne RH, et al. Brace wear control of curve progression in adolescent idiopathic scoliosis. J Bone Joint Surg Am 2010;92:1343–52.

    Article  PubMed  Google Scholar 

  26. Fischer GN. L’évaluation des environnements de travail: la méthode diagnostique. Montreal: Presse de l’Université de Montréal; 1997.

    Google Scholar 

  27. Dahl JB, Rosenberg J, Molke Jensen F, et al. Pressure pain thresh-olds in volunteers and herniorrhaphy patients. Acta Anaesthesiol Scand 1990;34:673–6.

    Article  CAS  PubMed  Google Scholar 

  28. Dhondt W, Willaeys T, Verbruggen LA, et al. Pain threshold in patients with rheumatoid arthritis and effect of manual oscillations. Scand J Rheumatol 1999;28:88–93.

    Article  CAS  PubMed  Google Scholar 

  29. Duarte MA, Goulart EM, Penna FJ. Pressure pain threshold in children with recurrent abdominal pain. J Pediatr Gastroenterol Nutr 2000;31:280–5.

    Article  CAS  PubMed  Google Scholar 

  30. Schenk P, Laeubli T, Klipstein A. Validity of pressure pain thresh-olds in female workers with and without recurrent low back pain. Eur Spine J 2007;16:267–75.

    Article  PubMed  Google Scholar 

  31. Rasmussen JW, Grothusen JR, Rosso AL, et al. Atypical chest pain: evidence of intercostobrachial nerve sensitization in complex regional pain syndrome. Pain Physician 2009;12:E329–34.

    Google Scholar 

  32. Visser D, Xue D, Ronsky JL, et al. Computer-aided optimal design of custom scoliosis braces considering clinical and patient evaluations. Comput Methods Programs Biomed 2012;107:478–89.

    Article  PubMed  Google Scholar 

  33. Pham VM, Herbaux B, Schill A, et al. Évaluation du résultat du corset de Chêneau dans la scoliose idiopathique de l’adolescent. Ann Readapt Med Phys 2007;50:125–33.

    Article  PubMed  Google Scholar 

  34. Aubin CE, Descrimes JL, Dansereau J, et al. Geometrical modeling of the spine and the thorax for the biomechanical analysis of scoliotic deformities using the finite element method. Ann Chir 1995;49:749–61.

    CAS  PubMed  Google Scholar 

  35. Gignac D, Aubin CE, Dansereau J, et al. Optimization method for 3D bracing correction of scoliosis using a finite element model. Eur Spine J 2000;9:185–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Perie D, Aubin CE, Lacroix M, et al. Biomechanical modelling of orthotic treatment of the scoliotic spine including a detailed representation of the brace-torso interface. Med Biol Eng Comput 2004;42:339–44.

    Article  CAS  PubMed  Google Scholar 

  37. Perie D, Aubin CE, Petit Y, et al. Personalized biomechanical simulations of orthotic treatment in idiopathic scoliosis. Clin Biomech (Bristol, Avon) 2004;19:190–5.

    Article  Google Scholar 

  38. Clin J, Aubin CE, Labelle H. Virtual prototyping of a brace design for the correction of scoliotic deformities. Med Biol Eng Comput 2007;45:467–73.

    Article  PubMed  Google Scholar 

  39. Clin J, Aubin CE, Parent S, et al. Biomechanical modeling of brace treatment of scoliosis: effects of gravitational loads. Med Biol Eng Comput 2011;49:743–53.

    Article  PubMed  Google Scholar 

  40. Desbiens-Blais F, Clin J, Parent S, et al. New brace design combining CAD/CAM and biomechanical simulation for the treatment of adolescent idiopathic scoliosis. Clin Biomech (Bristol, Avon) 2012;27:999–1005.

    Article  Google Scholar 

  41. Pazos V, Cheriet F, Danserau J, et al. Reliability of trunk shape measurements based on 3-D surface reconstructions. Eur Spine J 2007;16:1882–91.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Descrimes J, Aubin CE, Skalli W, et al. Introduction des facettes articulaires dans une modélisation par éléments finis de la colonne vertébrale et du thorax scoliotique: aspects mécaniques. Rachis 1995;7:301–14.

    Google Scholar 

  43. Dietrich M, Hedzior K, Zagrajek T. A biomechanical model of the human spinal system. Proc Inst Mech Eng 1991;205:19–26.

    Article  CAS  Google Scholar 

  44. Aubin CE, Dansereau J, de Guise JA, et al. A study of biomechanical coupling between spine and rib cage in the treatment by orthosis of scoliosis. Ann Chir 1996;50:641–50.

    CAS  PubMed  Google Scholar 

  45. Bischoff J, Arruda E, Grosh K. Finite element modeling of human skin using an isotropic, nonlinear elastic constitutive mode. J Biomech 2000;33:645–52.

    Article  CAS  PubMed  Google Scholar 

  46. Zhang M, Mak A. In vivo friction properties of human skin. Pros thet Orthot Int 1999;23:135–41.

    CAS  Google Scholar 

  47. Desbiens-Blais F. Approche intégrée de conception biomécanique de corsets pour le traitement de la scoliose idiopathique de l’adolescent. Montreal, Canada: Ecole Polytechnique de Montreal; 2012.

    Google Scholar 

  48. Aubin CE, Labelle H, Chevrefils C, et al. Preoperative planning simulator for spinal deformity surgeries. Spine (Phila Pa 1976) 2008;33:2143–52.

    Article  CAS  Google Scholar 

  49. Fortin D, Cheriet F, Beauséjour M, et al. A 3D visualization tool for the design and customisation of spinal braces. Comput Med Imaging Graphics 2007;31:614–24.

    Article  CAS  Google Scholar 

  50. Howard A, Wright JG, Hedden D. A comparative study of TLSO, Charleston and Milwaukee braces for idiopathic scoliosis. Spine (Phila Pa 1976) 1998;23:2404–11.

    Article  CAS  Google Scholar 

  51. Emans JB, Kaelin A, Bancel P, et al. The Boston bracing system for idiopathic scoliosis: follow-up results in 295 patients. Spine (Phila Pa 1976) 1986;11:792–801.

    Article  CAS  Google Scholar 

  52. Labelle H, Bellefleur C, Joncas J, et al. Preliminary evaluation of a computer-assisted tool for the design and adjustment of braces in idiopathic scoliosis: a prospective and randomized study. Spine (Phila Pa 1976) 2007;32:835–43.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carl-Eric Aubin PhD, PEng.

Additional information

Author disclosures: NC (grants from Natural Sciences and Research Council of Canada, Rodin4D, BostonBrace, Polytechnique Montreal); CEA (grants from Natural Sciences and Research Council of Canada, Rodin4D, BostonBrace; grants from Polytechnique Montreal); JC (grants from Natural Sciences and Research Council of Canada, Rodin4D, Boston-Brace; grants from Polytechnique Montreal); SL (grants from Canadian Institutes of Health Research); FDB (grants from Natural Sciences and Research Council of Canada, Rodin4D, BostonBrace, Polytechnique Montreal); HL (grants from Natural Sciences and Research Council of Canada, De Puy; personal fees from De Puy, Medtronic, Spinologics Inc); SP (grants from Natural Sciences and Research Council of Canada; personal fees from DePuy Synthes Spine, Medtronic, EOS-Imaging; grants from DePuy Synthes Spine, EOS-Imaging, Canadian Institutes of Health Research, Setting Scoliosis Straight Foundation, Medtronic; personal fees from Spinologics (30%), Academic Chair in Pediatric Spinal Deformities of CHU Ste-Justine).

This project was supported by the Natural Sciences and Engineering Research Council of Canada (Grant number RGPIN239148-11) and the Canadian Institutes of Health Research (Grant number 259812).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cobetto, N., Aubin, CE., Clin, J. et al. Braces Optimized With Computer-Assisted Design and Simulations Are Lighter, More Comfortable, and More Efficient Than Plaster-Cast Braces for the Treatment of Adolescent Idiopathic Scoliosis. Spine Deform 2, 276–284 (2014). https://doi.org/10.1016/j.jspd.2014.03.005

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jspd.2014.03.005

Keywords

Navigation