Skip to main content

Advertisement

Log in

Scoliosis-Associated Cervical Spine Pathologies

  • Published:
Spine Deformity Aims and scope Submit manuscript

Abstract

Study Design

A total of 126 scoliosis patients admitted to the hospital were screened for concomitant cervical pathologies.

Objectives

To investigate the prevalence of cervical spine pathologies and the clinical relevance of magnetic resonance imaging (MRI) in the evaluation of patients with neuromuscular, congenital, syndromic, and idiopathic scoliosis.

Background Summary

With the development of MRI, upper neural axis abnormalities such as syringomyelia and Chiari malformation are increasingly being found in patients with scoliosis, but no report in the literature describes other pathologies in the cervical area seen concomitant with different scoliosis types.

Methods

A total of 126 consecutive patients who were classified as having neuromuscular, congenital, syndromic, and idiopathic scoliosis were retrospectively evaluated. Data regarding cervical neural axis abnormalities obtained from the MRI studies were analyzed and classified into each type of scoliosis group.

Results

A total of 126 patients with scoliosis were evaluated for hindbrain and cervical spine anomalies. Patients were divided into 4 groups regarding the type of scoliosis. The cervical spine of all patients was evaluated with MRI and other radiologic methods when needed. The most frequently seen pathology was syringomyelia. Other pathologies found included congenital vertebral anomalies, Chiari malformation, arachnoid cyst, atlanto-axial dissociation, split cord, posterior vertebral fusion, vertebral hypoplasia, neurenteric cyst,myelomalacia, dermoid cyst, and decrease in craniovertebral angle. Cervical pathologies were most frequently seen in neuromuscular scoliosis, followed by congenital and syndromic groups.

Conclusions

Cervical spinal pathologies vary according to the type of scoliosis. The number of cervical spinal pathologies diagnosed in idiopathic scoliosis patients was least compared with neuromuscular and syndromic groups. The most common pathology was syringomyelia, followed by congenital vertebral anomalies and cerebral tonsillar hernia. Preoperative MRI scan provides vital information regarding cervical spinal pathologies encountered in scoliosis patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winter RB, Lonstein JE, Heithoff KB, Kirkham JA. Magnetic resonance imaging evaluation of the adolescent patient with idiopathic scoliosis before spinal instrumentation and fusion: a prospective, double-blinded study of 140 patients. Spine (Phila Pa 1976) 1997;22:855–8.

    Article  CAS  Google Scholar 

  2. Belmont PJ, Kuklo TR, Taylor KF, et al. Intraspinal anomalies associated with isolated congenital hemivertebra: the role of routine magnetic resonance imaging. J Bone Joint Surg Am 2004;86:1704–10.

    Article  PubMed  Google Scholar 

  3. Dobbs MB, Lenke LG, Szymanski DA, et al. Prevalence of neural axis abnormalities in patients with infantile idiopathic scoliosis. J Bone Joint Surg Am 2002;84:2230–4.

    Article  PubMed  Google Scholar 

  4. Hamzaoglu A, Ozturk C, Tezer M, et al. Simultaneous surgical treatment in congenital scoliosis and/or kyphosis associated with intraspinal abnormalities. Spine (Phila Pa 1976) 2007;32:2880–4.

    Article  Google Scholar 

  5. Pahys JM, Samdani AF, Betz RR. Intraspinal anomalies in infantile idiopathic scoliosis: prevalence and role of magnetic resonance imaging. Spine (Phila Pa 1976) 2009;34:E434–8.

    Article  Google Scholar 

  6. Prahinski JR, Polly DWJ, McHale KA, et al. Occult intraspinal anomalies in congenital scoliosis. J Pediatr Orthop 2000;20:59–63.

    CAS  PubMed  Google Scholar 

  7. Basu PS, Elsebaie H, Noordeen MH. Congenital spinal deformity: a comprehensive assessment at presentation. Spine (Phila Pa 1976) 2002;27:2255–9.

    Article  Google Scholar 

  8. Bernard Jr TN, Burke SW, Johnston III CE, et al. Congenital spine deformities: a review of 47 cases. Orthopaedics 1985;8:777–83.

    Google Scholar 

  9. Bradford DS, Heithoff KB, Cohen M. Intraspinal abnormalities and congenital spine deformities: a radiographic and MRI study. J Pediatr Orthop 1991;11:36–41.

    Article  CAS  PubMed  Google Scholar 

  10. McMaster MJ. Occult intraspinal anomalies and congenital scoliosis. J Bone Joint Surg Am 1984;66:588–601.

    Article  CAS  PubMed  Google Scholar 

  11. Bollini G, Launay F, Docquier PL, et al. Congenital abnormalities associated with hemivertebrae in relation to hemivertebrae location. J Pediatr Orthop B 2010;19:90–4.

    Article  PubMed  Google Scholar 

  12. Rajasekaran S, Kamath V, Kiran R, et al. Intraspinal anomalies in scoliosis: an MRI analysis of 177 consecutive scoliosis patients. Indian J Orthop 2010;44:57–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shen J, Wang Z, Liu J, Xue X, Qiu G. Abnormalities associated with congenital scoliosis: a retrospective study of 226 Chinese surgical cases. Spine (Phila Pa 1976) 2013;38:814–8.

    Article  Google Scholar 

  14. Davids JR, Chamberlin E, Blackhurst DW. Indications for magnetic resonance imaging in presumed adolescent idiopathic scoliosis. J Bone Joint Surg Am 2004;86:2187–95.

    Article  PubMed  Google Scholar 

  15. Eule JM, Erickson MA, O’Brien MF, Handler M. Chiari I malformation associated with syringomyelia and scoliosis: a twenty-year review of surgical and nonsurgical treatment in a pediatric population. Spine (Phila Pa 1976) 2002;27:1451–5.

    Article  Google Scholar 

  16. Wu L, Qiu Y, Wang B, et al. The left thoracic curve pattern; a strong predictor for neural axis abnormalities in patients with “idiopathic” scoliosis. Spine (Phila Pa 1976) 2010;35:182–5.

    Article  Google Scholar 

  17. Ozerdemoglu RA, Transfeldt EE, Denis F. Value of treating primary causes of syrinx in scoliosis associated with syringomyelia. Spine (Phila Pa 1976) 2003;28:806–14.

    Google Scholar 

  18. Tubbs RS, Doyle S, Conclin M, Oakes WJ. Scoliosis in a child with Chiari I malformation and the absence of syringomyelia: case report and a review of the literature. Childs Nerv Syst 2006;22:1351–4.

    Article  PubMed  Google Scholar 

  19. Acaroglu E, Alanay A, Akalan N, et al. Risk factors associated with corrective surgery in congenital scoliosis with tethered cord. Turk J Pediatr 1997;39:373–8.

    CAS  PubMed  Google Scholar 

  20. McLone DG, Herman JM, Gabrieli AP, Dias L. Tethered cord as a cause of scoliosis in children with a myelomeningocel. Pediatr Neurosurg 1990;16:8–13.

    Article  PubMed  Google Scholar 

  21. Akhtar OH, Rowe DE. Syringomyelia associated scoliosis with and without the Chiari I malformation. J Am Acad Orthop Surg 2008;16:407–17.

    Article  PubMed  Google Scholar 

  22. Charry O, Koop S, Winter R, et al. Syringomyelia and scoliosis: a review of twenty-five pediatric patients. J Pediatr Orthop 1994;14:309–17.

    Article  CAS  PubMed  Google Scholar 

  23. Farley FA, Song KM, Birch JG, Browne R. Syringomyelia and scoliosis in children. J Pediatr Orthop 1995;15:187–92.

    Article  CAS  PubMed  Google Scholar 

  24. Potenza V, Weinstein SL, Neyt JG. Dysfunctionof the spinal cord during spinal arthrodesis for scoliosis: recommendations for early detection and treatment. A case report. J Bone Joint Surg Am 1998;80:1679–83.

    Article  CAS  PubMed  Google Scholar 

  25. Ayvaz M, Alanay A, Yazıcı M, et al. Safety and efficacy of posterior instrumentation for patients with congenital scoliosis and spinal dysraphism. J Pediatr Orthop 2007;27:380–6.

    Article  PubMed  Google Scholar 

  26. Mehta VA, Gottfried ON, McGirt MJ, et al. Safety and efficacy of concurrent pediatric spinal cord untethering and deformity correction. J Spinal Disord Tech 2011;24:401–5.

    Article  PubMed  Google Scholar 

  27. Reigel DH, Tchernoukha K, Bazmi B, et al. Change in spinal curvature following release of tethered spinal cord associated with spina bifida. Pediatr Neurosurg 1994;20:30–42.

    Article  CAS  PubMed  Google Scholar 

  28. Royo-Salvador MB, Solé-Llenas J, Doménech JM, González-Adrio R. Results of the section of the filum terminale in 20 patients with syringomyelia, scoliosis and Chiari malformation. Acta Neurochir 2005;147:515–23.

    Article  CAS  PubMed  Google Scholar 

  29. Bhangoo R, Sgouros S. Scoliosis in children with Chiari I-related syringomyelia. Childs Nerv Syst 2006;22:1154–7.

    Article  PubMed  Google Scholar 

  30. Ozerdemoglu RA, Denis F, Transfeldt EE. Scoliosis associated with syringomyelia: clinical and radiologic correlation. Spine (Phila Pa 1976) 2003;28:1410–7.

    Google Scholar 

  31. Nakahara D, Yonezawa I, Kobanawa K, et al. Magnetic resonance imaging evaluation of patients with idiopathic scoliosis: a prospective study of four hundred seventy-two outpatients. Spine (Phila Pa 1976) 2011;36:E482–5.

    Article  Google Scholar 

  32. Inoue M, Minami S, Nakata Y, et al. Preoperative MRI analysis of patients with idiopathic scoliosis: a prospective study. Spine (Phila Pa 1976) 2004;30:108–14.

    Article  Google Scholar 

  33. Hosalkar HS, Sankar WN, Wills BPD, et al. Congenital osseous anomalies of the upper cervical spine. J Bone Joint Surg Am 2008;90:337–48.

    Article  PubMed  Google Scholar 

  34. Crawford AH, Herrera-Soto J. Scoliosis associated with neurofibromatosis. Orthop Clin N Am 2007;38:553–62.

    Article  Google Scholar 

  35. Gupta P, Lenke LG, Bridwell KH. Incidence of neural axis abnormalities in infantile and juvenile patients with spinal deformity: is a magnetic resonance image screening necessary? Spine (Phila Pa 1976) 1998;23:206–10.

    Article  CAS  Google Scholar 

  36. Hedequist D, Emans J. Congenital scoliosis. J Am Acad Orthop Surg 2004;12:266–75.

    Article  PubMed  Google Scholar 

  37. Evans SC, Edgar MA, Hall-Crags MA, et al. MRI of “idiopathic” juvenile scoliosis: a prospective study. J Bone Joint Surg Br 1996;78:314–7.

    Article  CAS  PubMed  Google Scholar 

  38. Yeom JS, Lee C, Park K, et al. Scoliosis associated with syringomyelia: analysis of MRI and curve progression. Eur Spine J 2007;16:1629–35.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Noordeen MH, Taylor BA, Edgar MA. Syringomyelia: a potential risk factor in scoliosis surgery. Spine (Phila Pa 1976) 1994;19:1406–9.

    Article  CAS  Google Scholar 

  40. Cardoso M, Keating RF. Neurosurgical management of spinal dysraphism and neurogenic scoliosis. Spine (Phila Pa 1976) 2009;34:1775–82.

    Article  Google Scholar 

  41. Gundry CR, Heithoff KB. Imaging evaluation of patients with spinal deformity. Orthop Clin North Am 1994;25:247–64.

    CAS  PubMed  Google Scholar 

  42. Ganey TM, Ogden JA. Development and maturation of the axial skeleton. In: Weinstein SL, editor. The pediatric spine: principals and practice. Philadelphia, PA: Lippincott Williams and Wilkins; 2001. p. 3–54.

    Google Scholar 

  43. Chuma A, Kitahara H, Minami S, et al. Structural scoliosis model in dogs with experimentally induced syringomyelia. Spine (Phila Pa 1976) 1997;22:589–94.

    Article  CAS  Google Scholar 

  44. Chu WCW, Man GCW, Lam WWM, et al. A detailed morphologic and functional magnetic resonance imaging study of the craniocervical junction in adolescent idiopathic scoliosis. Spine (Phila Pa 1976) 2007;32:1667–74.

    Article  Google Scholar 

  45. Dyste GN, Menezes AH, VanGilder JC. Symptomatic Chiari malformations: an analysis of presentation, management, and longterm outcome. J Neurosurg 1989;71:159–68.

    Article  CAS  PubMed  Google Scholar 

  46. Schijman E. History, anatomic forms, and pathogenesis of Chiari I malformations. Childs Nerv Syst 2004;20:323–8.

    Article  PubMed  Google Scholar 

  47. Menezes AH. Primary craniovertebral anomalies and the hindbrain herniation syndrome (Chiari I): data base analysis. Pediatr Neurosurg 1995;23:260–9.

    Article  CAS  PubMed  Google Scholar 

  48. Nishikawa M, Sakamoto H, Hakuba A, et al. Pathogenesis of Chiari malformation: a morphometric study of the posterior cranial fossa. J Neurosurg 1997;86:40–7.

    Article  CAS  PubMed  Google Scholar 

  49. Hensinger RN. Congenital scoliosis: etiology and associations. Spine (Phila Pa 1976) 2009;34:1745–50.

    Article  Google Scholar 

  50. Chan G, Dormans JP. Update on congenital spinal deformities: preoperative evaluation. Spine (Phila Pa 1976) 2009;34:1766–74.

    Article  Google Scholar 

  51. Johnston CE. Preoperative medical and surgical planning for early onset scoliosis. Spine (Phila Pa 1976) 2010;35:2239–44.

    Article  Google Scholar 

  52. Brockmeyer D, Gollogly S, Smith JT. Scoliosis associated with Chiari I malformations: the effect of suboccipital decompression on scoliosis curve progression: a preliminary study. Spine (Phila Pa 1976) 2003;28:2505–9.

    Article  Google Scholar 

  53. Bowman RM, Mohan A, Ito J, et al. Tethered cord release: a longterm study of 114 patients. J Neurosurg Pediatr 2009;3:181–7.

    Article  PubMed  Google Scholar 

  54. Do T, Fras C, Burke S, et al. Clinical value of routine preoperative magnetic resonance imaging in adolescent idiopathic scoliosis: a prospective study of three hundred and twenty-seven patients. J Bone Joint Surg Am 2001;83:577–9.

    Article  CAS  PubMed  Google Scholar 

  55. Flynn JM, Sodha S, Lou JE, et al. Predictors of progression of scoliosis after decompression of an Arnold Chiari I malformation. Spine (Phila Pa 1976) 2004;29:286–92.

    Article  Google Scholar 

  56. Hankinson TC, Klimo Jr P, Feldstein NA, et al. Chiari malformations, syringohydromyelia and scoliosis. Neurosurg Clin N Am 2007;18:549–68.

    Article  PubMed  Google Scholar 

  57. Lewonowski K, King J, Nelson M. Routine use of magnetic resonance imaging in idiopathic scoliosis patients less than eleven years of age. Spine (Phila Pa 1976) 1992;17(Suppl):109–16.

    Article  Google Scholar 

  58. Benli IT, Uzumcugil O, Aydin E, et al. Magnetic resonance imaging abnormalities of neural axis in Lenke type 1 idiopathic scoliosis. Spine (Phila Pa 1976) 2006;31:1828–33.

    Article  Google Scholar 

  59. Fernandes P, Weinstein SL. Natural history of early onset scoliosis. J Bone Joint Surg Am 2007;89(Suppl 1):21–33.

    Article  PubMed  Google Scholar 

  60. Hedequist DJ. Surgical treatment of congenital scoliosis. Orthop Clin N Am 2007;38:497–509.

    Article  Google Scholar 

  61. Barley JS, Mooney JF, Glazier SS, et al. Sudden appearance of new upper extremity motor function while performing neurophysiologic intraoperative monitoring during tethered cord release: a case report. J Pediatr Orthop 2010;30:624–8.

    Article  PubMed  Google Scholar 

  62. Gillespie R, Faithfull DK, Roth A, et al. Intraspinal anomalies in congenital scoliosis. Clin Orthop Relat Res 1973;93:103–9.

    Article  Google Scholar 

  63. Suh S, Sarwark JF, Vora A, Huang BK. Evaluating congenital spine deformities for intraspinal anomalies with magnetic resonance imaging. J Pediatr Orthop 2001;21:525–31.

    CAS  PubMed  Google Scholar 

  64. Ruf M, Jensen R, Harms J. Hemivertebra resection in the cervical spine. Spine (Phila Pa 1976) 2005;30:380–5.

    Article  Google Scholar 

  65. Phillips WA, Hensinger RN, Kling TF. Management of scoliosis due to syringomyelia in childhood and adolescence. J Pediatr Orthop 1990;10:351–4.

    Article  CAS  PubMed  Google Scholar 

  66. Tomlinson RJ, Wolfe MW, Nadall JM, et al. Syringomyelia and developmental scoliosis. J Pediatr Orthop 1994;14:580–5.

    Article  PubMed  Google Scholar 

  67. Crawford AH, Lykissas MG, Schorry EK, et al. Neurofibromatosis: etiology, commonly encountered spinal deformities, common complications and pitfalls of surgical treatment. Spine Deformity 2012; (Preview Issue):85–94.

    Google Scholar 

  68. Letts M, Kabir A, Davidson D. The spinal manifestations of Stickler’s syndrome. Spine (Phila Pa 1976) 1999;24:1260–4.

    Article  CAS  Google Scholar 

  69. Remes V, Marttinen E, Poussa M, et al. Cervical kyphosis in diastrophic dysplasia. Spine (Phila Pa 1976) 1999;24:1990–5.

    Article  CAS  Google Scholar 

  70. Coscia MF, Bassett GS, Bowen JR, et al. Spinal abnormalities in camptomelic dysplasia. J Pediatr Orthop 1989;9:6–14.

    Article  CAS  PubMed  Google Scholar 

  71. Johnston CE, Birch JG, Daniels JL. Cervical kyphosis in patients who have Larsen syndrome. J Bone Joint Surg Am 1996;78:538–45.

    Article  PubMed  Google Scholar 

  72. Leet AI, Sampath JS, Scott Jr CI, MacKenzie WG. Cervical spinal stenosis in metatropic dysplasia. J Pediatr Orthop 2006;26:347–52.

    Article  PubMed  Google Scholar 

  73. Campbell RM. Spine deformities in rare congenital syndromes: clinical issues. Spine (Phila Pa 1976) 2009;34:1815–27.

    Article  Google Scholar 

  74. Sanders JO. Spinal deformity in skeletal dysplasias. Spine Deformity 2012; (Preview Issue): 101–6.

    Google Scholar 

  75. Erkula G, Sponseller PD, Paulsen L, et al. Musculoskeletal findings of Loeys-Dietz Syndrome. J Bone Joint Surg Am 2010;92:1876–83.

    Article  PubMed  Google Scholar 

  76. Tan EW, Sponseller PD. Connective tissue syndromes: themes and guidelines for the spine deformity surgeon. Spine Deformity 2012; (Preview Issue): 95–100.

    Google Scholar 

  77. Lipson SJ. Dysplasia of the odontoid process in Morquio’s syndrome causing quadriparesis. J Bone Joint Surg Am 1977;59:340–4.

    Article  CAS  PubMed  Google Scholar 

  78. Mut M, Cila A, Varli K, et al. Multilevel myelopathy in Maroteaux-Lamy syndrome and review of the literature. Clin Neurol Neurosurg 2005;107:230–5.

    Article  PubMed  Google Scholar 

  79. Ransford AO, Crockard HA, Stevens JM, et al. Occipito-atlantoaxial fusion in Morquio-Brailsford syndrome: a ten-year experience. J Bone Joint Surg Br 1996;78:307–13.

    Article  CAS  PubMed  Google Scholar 

  80. White KK, Steinman S, Mubarak SJ. Cervical stenosis and spastic quadriparesis in morquio disease (MPS IV): a case report with twenty-six-year follow-up. J Bone Joint Surg Am 2009;91:438–42.

    Article  PubMed  Google Scholar 

  81. White KK. Mucopolysaccharidoses: etiology, classification, deformities unique to each type, treatment modalities and indications for surgical intervention. Spine Deformity 2012; (Preview Issue): 114–8.

    Google Scholar 

  82. Dimar JY, Carreon LY. Spinal deformity in Down syndrome. Spine Deformity 2012; (Preview Issue): 75–84.

    Google Scholar 

  83. Sponseller PD, Ahn NU, Ahn UM, et al. Osseous anatomy of the lumbosacral spine in Marfan syndrome. Spine (Phila Pa 1976) 2000;25:2797–802.

    Article  CAS  Google Scholar 

  84. Pyeritz RE, Fishman EK, Bernhardt BA, Siegelman SS. Dural ectasia is a common feature of Marfan’s syndrome. Am J Hum Genet 1988;43:726–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Maiocco B, Deeney VF, Coulon R, Parks PF. Adolescent idiopathic scoliosis and the presence of spinal cord abnormalities: preoperative magnetic resonance imaging analysis. Spine (Phila Pa 1976) 1997;22:2537–41.

    Article  CAS  Google Scholar 

  86. O’Brien MF, Lenke LG, Bridwell HK, et al. Pre-operative spinal canal investigation in adolescent idiopathic curves greater than 70 degrees. Spine (Phila Pa 1976) 1994;19:1606–10.

    Article  Google Scholar 

  87. Ozturk C, Karadereler S, Ornek I, et al. The role of routine magnetic resonance imaging in the preoperative evaluation of adolescent idiopathic scoliosis. Int Orthop 2010;34:543–6.

    Article  PubMed  Google Scholar 

  88. Malviya S, Voepel-Lewis T, Tait AR. Adverse events and risk factors associated with the sedation of children by nonanesthesiologists. Anesth Analg 1997;85:1207–13.

    Article  CAS  PubMed  Google Scholar 

  89. Malviya S, Voepel-Lewis T, Eldevik OP, et al. Sedation and general anaes-thesia in children undergoing MRI and CT: adverse events and outcomes. Br J Anaesth 2000;84:743–8.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehmet B. Balioğlu MD.

Additional information

Author disclosures: MBB (none); AA (none); YA (none); MTT (none); MAK (none); CHY (none); MK (none); ET (none); AA (none).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balioğlu, M.B., Albayrak, A., Atıcı, Y. et al. Scoliosis-Associated Cervical Spine Pathologies. Spine Deform 2, 131–142 (2014). https://doi.org/10.1016/j.jspd.2013.11.001

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jspd.2013.11.001

Keywords

Navigation