Skip to main content

Advertisement

Log in

Changes in Matrix Metalloproteinase 2 Activities in Amniochorions During Premature Rupture of Membranes

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

Increased proteolytic activities of matrix metalloproteinases (MMPs) such as MMP-3 and MMP-9 are associated with premature rupture of membranes et term. However, it is unclear whether MMP-2 is involved in the premature rupture of membranes. In this study, to elucidate the role of MMP-2, we evaluated the activity of MMP-2 and also the expression of pro-MMP-2, membrane type 1 (MT1)-MMP and tissue inhibitor of metalloproteinase (TIMP)-1 in premature rupture of membranes.

Methods

Amniochrions were prepared from 29 subjects with no labor (cesarean section; CS, n = 10), labor (normal delivery; ND, n = 10), and labor during premature rupture of membranes (PROM, n = 9). MMP-2 activity was spectrophotometrically assayed by measuring the digestion of an MMP-2-specific substrate. The levels of pro-MMP-2, MT1-MMMP and TIME-1 were determined by Western immunoblotting.

Results

The activity of MMP-2 in PROM was significantly higher than that in CS and ND (P <.05). In addition, the levels of MT1-MMP, an activator of MMP-2, were higher in PROM than in CS and ND. In contrast, the level of TIMP-1, an inhibitor of MMP-2 was substantially lower in PROM than CS and ND. Moreover, the levels of pro-MMP-2 were increased more significantly in PROM and ND than in CS (P <.05).

Conclusion

Our results suggest that the increased expression of pro-MMP-2 and MT1-MMP and decreased expression of TIMP-1 may result in the increased activity of MMP-2, which is involved in the degradation of extracellular matrix (ECM) of fetal membrane, thereby inducing the premature rupture of membranes at term.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rajabi MR, Dean DD, Beydoun SN, Woessner JF. Jr. Elevated tissue levels of collagenase during dilation of uterine cervix in human parturition. Am J Obstet Gynecol 1988;159:971–976.

    Article  CAS  PubMed  Google Scholar 

  2. Bryant-Greenwood GD, Yamamoto SY. Control of peripartal collagenolysis in the human chorion-decidua. Am J Obstet Gynecol 1995;172:63–70.

    Article  CAS  PubMed  Google Scholar 

  3. Tsatas D, Baker MS, Rice GE. Differential expression of proteases in human gestational tissues before, during and after spontaneousonset labour at term. J Reprod Fertile 1999;116:43–49.

    Article  CAS  Google Scholar 

  4. Draper D, McGregor J, Hall J, et al. Elevated protease activities in human amnion and chorion correlate with preterm premature rupture of membranes. Am J Obstet Gynecol 1995;173:1506–1512.

    Article  CAS  PubMed  Google Scholar 

  5. Fortunato SJ, Menon R. Screening of novel matrix metalloproteinases (MMPs) in human fetal membranes. J Assist Reprod Genet 2002;19:483–486.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Vadillo-Ortega F, Estrada-Gutierrez G. Role of matrix metalloproteinases in preterm labour. BJOG 2005;112 Suppl 1:19–22.

    Article  CAS  PubMed  Google Scholar 

  7. Fernandez PL, Merino MJ, Nogales FF, Charonis AS, Stetler-Stevenson W, Liotta L. Immunohistochemical profile of basement membraine proteins and 72 kilodalton type IV collagenase in the implantation placental site. An integrated view. Lab Invest 1992;66:572–579.

    CAS  PubMed  Google Scholar 

  8. Salo T, Liottta LA, Tryggvason K. Purification and characterization of a murine basement membrane collagen-degrading enzyme secreted by metastatic tumor cells. J Biol Chem 1983;258:3058–3063.

    CAS  PubMed  Google Scholar 

  9. Fortunato SJ, Menon R, Lombar di SJ. Collagenolytic enzymes (gelatinases) and their inhibitors in human amniochorionic membrane. Am J Obstet Gynecol 1997;177:731–741.

    Article  CAS  PubMed  Google Scholar 

  10. Locksmith GJ, Clark P, Duff P, Saa de GR, Schultz GS. Amniotic fluid concentrations of matrix metalloproteinase 9 and tissue inhibitor of metalloproteinase 1 during pregnancy and labor. Am J Obstet Gynecol 2001;184:159–164.

    Article  CAS  PubMed  Google Scholar 

  11. Maymon E, Romero R, Pacora P, et al. A role for the 72 kDa gelatinase (MMP-2) and its inhibitor (TIMP-2) in human parturition, premature rupture of membranes and intraamniotic infection. J Perinat Med 2001;29:308–316.

    Article  CAS  PubMed  Google Scholar 

  12. Xu P, Alfaidy N, Challis JR. Expression of matrix metalloproteinase (MMP)-2 and MMP-9 in human placenta and fetal membranes in relation to preterm and term labor. J Clin Endocrinol Metab 2002;87:1353–1361.

    Article  CAS  PubMed  Google Scholar 

  13. Vadillo-Ortega F, Hernandez A, Gonzalez-Avi la G, Bermejo L, Iwata K, Strauss JF 3rd. Increased matrix metalloproteinase activity and reduced tissue inhibitor of metalloproteinases-1 levels in amniotic fluids from pregnancies complicated by premature rupture of membranes. Am J Obstet Gynecol 1996;174:1371–1376.

    Article  CAS  PubMed  Google Scholar 

  14. Athay de N, Edwin SS, Romero R, et al. A role for matrix metalloproteinase-9 in spontaneous rupture of the fetal membranes. Am J Obstet Gynecol 1998;179:1248–1253.

    Article  Google Scholar 

  15. Roth I, Fisher SJ. IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev Biol 1999;205:194–204.

    Article  CAS  PubMed  Google Scholar 

  16. Peled ZM, Phelps ED, Updike DL, et al. Matrix matalloproteinases and the ontogency of scarless repair: The other side of the wound healing balance. Plast Reconstr Surg 2002;110:801–811.

    Article  PubMed  Google Scholar 

  17. Nakada M, Yamada A, Takino T, et al. Suppression of membrane-type 1 matrix metalloproteinase (MMP)-mediated MMP-2 activation and tumor invasion by testican 3 and its splicing variant gne product, N-Tes. Cancer Res 2001;61:8896–8902.

    CAS  PubMed  Google Scholar 

  18. Maymon E, Romero R, Pacora P, et al. Evidence of in vivo differential bioavailability of the active forms of matrix metalloproteinases 9 and 2 in parturition, spontaneous rupture of membranes, and intra-amniotic infection. Am J Obstet Gynecol 2000;183:887–894.

    Article  CAS  PubMed  Google Scholar 

  19. Goto T, Endo T, Henmi H, et al. Gonadotropin-releasing hormone agonist has the ability to induce increased matrix metalloproteinase (MMP)-2 and membrane type 1-MMP expression in corpora lutea, and structural luteolysis in rats. J Endocrinol 1999;161:393–402.

    Article  CAS  PubMed  Google Scholar 

  20. Kinoh H, Sato H, Tsunezuka Y, et al. MT-MMP, the cell surface activator of proMMP-2 (pro-gelatinase A), is expressed with its substrate in mouse tissue during embryogenesis. J Cell Sci 1996;109:953–959.

    CAS  PubMed  Google Scholar 

  21. Hulboy DL, Rudolph LA, Matrisian LM. Matrix metalloproteinases as mediators of reproductive function. Mol Hum Reprod 1997;3:27–45.

    Article  CAS  PubMed  Google Scholar 

  22. Fortunato SJ, Menon R, Lombar di SJ. Expression of a progelatinase activator (MT1-MMP) in human fetal membranes. Am J Reprod Immunol 1998;39:316–322.

    Article  CAS  PubMed  Google Scholar 

  23. Vadillo-Ortega F, Gonzalez-Avi la G, Furth EE, et al. 92-kd type IV collagenase (matrix metalloproteinase-9) activity in human amniochorion increases with labor. Am J Pathol 1995;146:148–156.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ulug U, Goldman S, Ben-Shlomo I, Shalev E. Matrix metalloproteinase (MMP)-2 and MMP-9 and their inhibitor, TIMP-1, in human term decidua and fetal membranes: The effect of prostaglandin F(2alpha) and indomethacin. Mol Hum Reprod 2001;7:1187–1193.

    Article  CAS  PubMed  Google Scholar 

  25. Goldman S, Weiss A, Eyali V, Shalev E. Differential activity of the gelatinases (matrix metalloproteinases 2 and 9) in the fetal membranes and decidua, associated with labour. Mol Hum Reprod 2003;9:367–373.

    Article  CAS  PubMed  Google Scholar 

  26. Yonemoto H, Young CB, Ross JT, Guilbert LL, Fairclough RJ, Olson DM. Changes in matrix metalloproteinase (MMP)-2 and MMP-9 in the fetal amnion and chorion during gestation and at term and preterm labor. Placenta 2006;27:669–677.

    Article  CAS  PubMed  Google Scholar 

  27. Fortunato SJ, Menon R, Lombar di SJ. Presence of four tissue inhibitors of matrix metalloproteinases (TIMP-1, -2, -3 and -4) in human fetal membranes. Am J Reprod Immunol 1998;40:395–400.

    Article  CAS  PubMed  Google Scholar 

  28. Emonard H, Bellon G, Troeberg L, et al. Low density lipoprotein receptor-related protein mediates endocytic clearance of pro-MMP-2. TIMP-2 complex through a thrombospondi-independent mechanism. J Biol Chem 2004;279:54944–54951.

    Article  CAS  PubMed  Google Scholar 

  29. Riley SC, Leask R, Denison FC, Wisely K, Calder AA, Howe DC. Secretion of tissue inhibitors of matrix metalloproteinases by human fetal membranes, decidua and placenta at parturition. J Endocrinol 1999;162:351–359.

    Article  CAS  PubMed  Google Scholar 

  30. Park KH, Chaiworapongsa T, Kim YM, et al. Matrix metalloproteinase 3 in parturition, premature rupture of the membranes, and microbial invasion of the amniotic cavity. J Perinat Med 2003;31:12–22.

    Article  CAS  PubMed  Google Scholar 

  31. Someya A, Nishijima K, Nunoi H, Irie S, Nagaoka I. Study on the superoxide-producing enzyme of eosinophils and neutrophils—Comparison of the NADPH oxidase components. Arch Biochem Biophys 1997;345:207–213.

    Article  CAS  PubMed  Google Scholar 

  32. Malak TM, Ockleford CD, Bell SC, Dalgleish R, Bright N, Macvicar J. Confocal immunofluorescence localization of collagen types I, III, IV, V and VI and their ultrastructural organization in term human fetal membranes. Placenta 1993;14:385–406.

    Article  CAS  PubMed  Google Scholar 

  33. Vadillo-Ortega F, Gonzalez-Avi la G, Karchmer S, Cruz NM, Ayala-Ruiz A, Lama MS. Collagen metabolism in premature rupture of amniotic membranes. Obstet Gynecol 1990;75:84–88.

    CAS  PubMed  Google Scholar 

  34. Fortunato SJ, Menon R, Lombar di SJ. MMP/TIMP imbalance in amniotic fluid during PROM: an indirect support for endogenous pathway to membrane rupture. J Perinat Med 1999;27:362–368.

    Article  CAS  PubMed  Google Scholar 

  35. Fortunato SJ, Menon R, Lombar di SJ. Amniochorion gelatinase-gelatinase inhibitor imbalance in vitro: A possible infectious pathway to rupture. Obstet Gynecol 2000;95:240–244.

    CAS  PubMed  Google Scholar 

  36. Fortunato SJ, Menon R. Distinct molecular events suggest different pathways for preterm labor and premature rupture of membranes. Am J Obstet Gynecol 2001;184:1399–1405.

    Article  CAS  PubMed  Google Scholar 

  37. Evaldson GR, Larsson B, Jiborn H, Nord CE. Does and intracervical infection influence the fibrinolytic activity and the collagen content of the fetal membranes? A study of ascending infections in pregnant ewes. Eur J Obstet Gynecol Reprod Biol 1987;25:259–266.

    Article  CAS  PubMed  Google Scholar 

  38. Moore RM, Mansour JM, Redline RW, Mercer BM, Moore JJ. The physiology of fetal membrane rupture: insight gained from the determination of physical proerties. Placenta 2006;27:1037–1051.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuyuki Ota MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ota, A., Yonemoto, H., Someya, A. et al. Changes in Matrix Metalloproteinase 2 Activities in Amniochorions During Premature Rupture of Membranes. Reprod. Sci. 13, 592–597 (2006). https://doi.org/10.1016/j.jsgi.2006.10.001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2006.10.001

Key words

Navigation