Skip to main content

Advertisement

Log in

Non-Muscle Myosin-II-B Filament Regulation of Paracellular Resistance in Cervical Epithelial Cells Is Associated With Modulation of the Cortical Acto-Myosin

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

To understand myosin regulation of epithelial permeability.

Methods

This was an experimental study, using human cervical epithelial cells CaSki. End points were paracellular permeability (determined in terms of transepithelial electrical resistance); non-muscle myosin-II-B (NMM-II-B) cellular localization; NMM-II-B phosphorylation status; NMM-II-B-actin interaction (determined in vitro by the immunoprecipitation-immunoreactivity method); and NMM-II-B filamentation (determined in vitro using purified NMM-II-B filaments in terms of filaments disassembly/assembly ratios.

Results

Treatment of cells with the Rho-associated kinase (ROCK) inhibitor Y-27632 or with the phosphatase inhibitor okadaic acid decreased the resistance of the lateral intercellular space (RLIS), and increased phosphorylation of NMM-II-B on threonine and serine residues. Y-27632 induced disorganization of the cortical acto-myosin and decreased co-immunoprecipitation of actin with NMM-II-B. Homodimerization assays using NMM-II-B filaments from cells treated with Y-27632 or okadaic acid revealed decreased filamentation compared to control cells. However, okadaic acid blocked Y-27632 decreased filamentation. Treatment with DRB, a casein kinase-II (CK2) inhibitor, induced opposing effects to those of Y-27632 and okadaic acid. Treatment with 5,6-dichloro-1-β-(D)-ribofuranosylbenzimidazole (DRB) did not involve modulation of actin depolymerization, suggesting that NMM-II-B regulation of the RLIS was independent of actin polymerization status. Exposure of NMM-II-B filaments to CK2 increased filamentation, regardless of prior treatments in vivo with Y-27632, okadaic acid, or DRB.

Conclusions

The results suggest that NMM-II-B filaments are in steady-state equilibrium of phosphorylation-dephosphorylation mediated by CK2 and by ROCK-regulated myosin heavy chain phosphatase, respectively. Increased phosphorylation would tend to inhibit assembly of NMM-II-B filaments and lead to decreased actin-myosin interaction, which would tend to decrease the RLIS and increase the paracellular permeability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ussing HH, Zerahn K. Active transport of sodium as the source of electric current in the short-circuited isolated frog skin. Acta Physiol Scand 1951;23:110–127.

    Article  CAS  PubMed  Google Scholar 

  2. Reuss L. Tight junction permeability to ions and water. In: Cereijido M, ed. Tight-junctions. Boca Raton, FL: CRC Press, 1991;49–66.

    Google Scholar 

  3. Gorodeski GI. The cultured human cervical epithelium: A new model for studying transepithelial paracellular transport. J Soc Gynecol Invest 1996;3:267–280.

    Article  CAS  Google Scholar 

  4. Gorodeski GI. NO increases permeability of cultured human cervical epithelia by cGMP-mediated increase in G-actin. Am J Physiol 2000;278:C942–C952.

    Article  CAS  Google Scholar 

  5. Gorodeski GI. cGMP-dependent ADP-depolymerization of actin mediates estrogen increase in human cervical epithelial permeability. Am J Physiol 2000;279:C2028–C2036.

    Article  CAS  Google Scholar 

  6. Sutherland JD, Witke W. Molecular genetic approaches to understanding the actin cytoskeleton. Curr Opin Cell Biol 1999;11:142–151.

    Article  CAS  PubMed  Google Scholar 

  7. Sellers JR. Myosins: A diverse superfamily. Biochim Biophys Acta 2000;14986:3–22.

    Article  Google Scholar 

  8. Bresnick AR. Molecular mechanisms of nonmuscle mysoin-II regulation. Curr Opin Cell Biol 1973;11:26–33.

    Article  Google Scholar 

  9. Sutton TA, Mang HE, Atkinson SJ. Rho-kinase regulates myosin II activation in MDCK cells during recovery after ATP depletion. Am J Physiol 2001;281:F810–F818.

    Article  CAS  Google Scholar 

  10. Hecht G, Pestic L, Nikcevic G, et al. Expression of the catalytic domain of myosin light chain kinase increases paracellular permeability. Am J Physiol 1996;271:C1678–C1684.

    Article  CAS  PubMed  Google Scholar 

  11. Tan JL, Ravid S, Spudich JA. Control of nonmuscle myosins by phosphorylation. Annu Rev Biochem 1992;61:721–759.

    Article  CAS  PubMed  Google Scholar 

  12. Blair SA, Kanse SV, Clayburgh DR, Turner JR. Epithelial myosin light chain kinase expression and activity are upregulated in inflammatory bowel disease. Lab Invest 2006;86:191–201.

    Article  CAS  PubMed  Google Scholar 

  13. Kawamoto S, Adelstein RS. Chicken nonmuscle myosin heavy chains: Differential expression of two mRNAs and evidence for two different polypeptides. J Cell Biol 1991;112:915–924.

    Article  CAS  PubMed  Google Scholar 

  14. Simons M, Wang M, McBri de OW, et al. Human nonmuscle myosin heavy chains are encoded by two genes located on different chromosomes. Circ Res 1991;69:530–539.

    Article  CAS  PubMed  Google Scholar 

  15. Gorodeski GI, Merlin D, De Santis BJ, et al. Characterization of paracellular permeability in cultured human cervical epithelium: Regulation by extracellular ATP. J Soc Gynecol Invest 1994;1:225–233.

    Article  CAS  Google Scholar 

  16. Gorodeski GI, Romero MF, Hopfer U, Rorke U, Utian WH, Eckert RL. Human uterine cervical epithelial cells grown on permeable support—A new model for the study of differentiation and transepithelial transport. Differentiation 1994;56:107–118.

    CAS  PubMed  Google Scholar 

  17. Gorodeski GI, Peterson D, De Santis BJ, Hopfer U. Nucleotide-receptor mediated decrease of tight-junctional permeability in cultured human cervical epithelium. Am J Physiol 1996;270:C1715–C1725.

    Article  CAS  PubMed  Google Scholar 

  18. Feng YH, Wang L, Wang Q, Li X, Zeng R, Gorodeski GI. ATP ligation stimulates GRK-3-mediated phosphorylation and β-arrestin-2-and dynamin-dependent internalization of the P2X7-receptor. Am J Physiol 2005;288:C1342–C1356.

    Article  CAS  Google Scholar 

  19. Murakami N, Elzinga M, Singh SS, Chauhan VP. Direct binding of myosin II to phospholipid vesicles via tail regions and phosphorylation of the heavy chains by protein kinase C. J Biol Chem 1994;269:16082–16090.

    CAS  PubMed  Google Scholar 

  20. Murakami N, Singh SS, Chauhan VP, Elzinga M. Phospholipid binding, phosphorylation by protein kinase C, and filament assembly of the COOh terminal heavy chain fragments of nonmuscle myosin II isoforms MIIA and MIIB. Biochemistry 1995;34:16046–16055.

    Article  CAS  PubMed  Google Scholar 

  21. Murakami N, Chauhan VP, Elzinga M. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: Filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites. Biochemistry 1998;37:1989–2003.

    Article  CAS  PubMed  Google Scholar 

  22. Murakami N, Kotula L, Hwang YW. Two distinct mechanisms for regulation of nonmuscle myosin assemblyy via the heavy chain: Phosphorylation for MIIB and mts 1 binding for MIIA. Biochemistry 2000;39:11441–11451.

    Article  CAS  PubMed  Google Scholar 

  23. Gorodeski GI, Eckert RL, Utian WH, Rorke EA. Maintenance of in vivo-like keratin expression, sex steroid responsiveness and estrogen receptor expression in cultured human ectocervical epithelial cells. Endocrinology 1990;126:399–406.

    Article  CAS  PubMed  Google Scholar 

  24. Pfitzer G. Regulation of myosin phosphorylation in smooth muscle. J Appl Physiol 2001;91:497–503.

    Article  CAS  PubMed  Google Scholar 

  25. Zandomeni R, Zandomeni MC, Shugar D, Weimann R. Casein kinase type II is involved in the inhibition by 5,6-dichloro1-beta-D-ribofuranosylbenzimidazole of specific RNA polymerase II transcription. J Biol Chem 1986;261:3414–3419.

    CAS  PubMed  Google Scholar 

  26. Uehata M, Ishizaki T, Satoh H, et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997;389:990–994.

    Article  CAS  PubMed  Google Scholar 

  27. Dounay AB, Forsyth CJ. Okadaic acid: The archetypal serine/threonine protein phosphatase inhibitor. Curr Med Chem 2002;9:1939–1980.

    Article  CAS  PubMed  Google Scholar 

  28. Ito M, Nakano T, Erdodi F, Hartshorne DJ. Myosin phosphatase: Structure, regulation and function. Mol Cell Biochem 2004;259:197–209.

    Article  CAS  PubMed  Google Scholar 

  29. Sinard JH, Pollard TD. The effect of heavy chain phosphorylation and solution conditions on the assembly of Acanthamoeba myosin-II. J Cell Biol 1989;109:1529–1535.

    Article  CAS  PubMed  Google Scholar 

  30. Pollard TD, Korn ED. Acanthamoeba myosin. I. Isolation from Acanthamoeba Castellanii off an enzyme similar to muscle myosin. J Biol Chem 1973;248:4682–4690.

    CAS  Google Scholar 

  31. Cheng TP, Murakami N, Elzinga M. Localization of myosin IIB at the leading edge of growth cones from rat dorsal root ganglionic cells. FEBS Lett 1992;311:91–94.

    Article  CAS  PubMed  Google Scholar 

  32. Kelley CA, Sellers JR, Gard DL, Bui D, Adelstein RS, Baines IC. Xenopus nonmuscle myosin heavy chain isoforms have different subcellular localizations and enzymatic activities. J Cell Biol 1996;134:675–687.

    Article  CAS  PubMed  Google Scholar 

  33. Maupin P, Phillips CL, Adelstein RS, Pollard TD. Differential localization of myosin-II isozymes in human cultured cells and blood cells. J Cell Sci 1994;107:3077–3090.

    CAS  PubMed  Google Scholar 

  34. Rochlin MW, Itoh K, Adelstein RS, Bridgman PC. Localization of myosin II A and B isoforms in cultured neurons. J Cell Sci 1995;108:3661–3670.

    CAS  PubMed  Google Scholar 

  35. Kimura K, Ito M, Amano M, et al. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase). Science 1996;273:245–248.

    Article  CAS  PubMed  Google Scholar 

  36. Somlyo AP, Somlyo AV. Signal transduction by G-proteins, rho-kinase and protein phosphatase to smooth muscle and nonmuscle myosin II. J Physiol 2000;522:177–185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Horwitz AR, Parsons JT. Cell migration—Moving on. Science 1999;286:1102–1103.

    Article  CAS  PubMed  Google Scholar 

  38. Van-Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev 1997;11:2295–2322.

    Article  CAS  PubMed  Google Scholar 

  39. Faust M, Montenarh M. Subcellular localization of protein kinase CK2; a key to its function? Cell Tissue Res 2000;301:329–340.

    Article  CAS  PubMed  Google Scholar 

  40. Unger GM, Davis AT, Slaton JW, Ahmed K. Protein kinase CK2 as regulator of cell survival: Implications for cancer therapy. Curr Cancer Drug Targets 2004;4:77–84.

    Article  PubMed  Google Scholar 

  41. Pinna LA, Meggio F, Sarno S. Casein kinase-2 and cell signaling. In: Papa S, Tager JM, eds. Biochemistry of cell membranes. Basel: Birkhauser Verlag, 1995:15–27.

    Chapter  Google Scholar 

  42. Levin ER. Bidirectional signaling between the estrogen receptor and the epidermal growth factor receptor. Mol Endocrinol 2003;17:309–317.

    Article  CAS  PubMed  Google Scholar 

  43. Kelley CA, Adelstein RS. The 204-kDa smooth muscle myosin heavy chain is phosphorylated in intact cells by casein kinase II on a serine near the carboxyl terminus. J Biol Chem 1990;265:17876–17882.

    CAS  PubMed  Google Scholar 

  44. Ermert L, Bruckner H, Walmrath D, et al. Role of endothelial cytoskeleton in high-permeability edema due to botulinum C2 toxin in perfused rabbit lungs. Am J Physiol 1995;268:L753–L761.

    CAS  PubMed  Google Scholar 

  45. Sampath P, Pollard TD. Effects of cytochalasin, phalloidin and pH on the elongation of actin. Biochemistry 1991;30:1973–1980.

    Article  CAS  PubMed  Google Scholar 

  46. Wang YL. Exchange of actin subunits at the leading edge of living fibroblasts: Possible role of treadmilling. J Cell Biol 1985;101:597–602.

    Article  CAS  PubMed  Google Scholar 

  47. De La Cruz EM, Pollard TD. Kinetics and thermodynamics of phalloidin binding to actin filaments from three divergent species. Biochemistry 1996;35:14054–14061.

    Article  Google Scholar 

  48. Shohet RV, Conti MA, Kawamoto S, Preston YA, Brill DA, Adelstein RS. Cloning of the cDNA encoding the myosin heavy chain of a vertebrate cellular myosin. Proc Natl Acad Sci U S A 1989;86:7726–7730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Takahashi M, Kawamoto S, Adelstein RS. Evidence for inserted sequences in the head region of nonmuscle myosin specific to the nervous system. Cloning of the cDNA encoding the myosin heavy chain-B isoform of vertebrate nonmuscle myosin. J Biol Chem 1992;267:17864–17871.

    CAS  PubMed  Google Scholar 

  50. Egelhoff TT, Lee RJ, Spudich JA. Dictyostelium myosin heavy chain phosphorylation sites regulate myosin filament assembly and localization in vivo. Cell 1993;75:363–371.

    Article  CAS  PubMed  Google Scholar 

  51. Kelley CA, Oberman F, Yisraeli JK, Adelstein RS. A Xenopus nonmuscle myosin heavy chain isoform is phosphorylated by cyclin-p34cdc2 kinase during meiosis. J Biol Chem 1995;270:1395–1401.

    Article  CAS  PubMed  Google Scholar 

  52. Straussman R, Even L, Ravid S. Myosin II heavy chain isoforms are phosphorylated in an EGF-dependent manner: Involvement of protein kinase C. J. Cell Sci 2001;114:3047–3057.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George Gorodeski MD, PhD.

Additional information

Supported by National Institutes of Health Grants No. HD29924 and AG15955 (G.I.G.).

The authors acknowledge the technical support of Kimberley Frieden, Brian De-Santis, and Dipika Pal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Gorodeski, G. Non-Muscle Myosin-II-B Filament Regulation of Paracellular Resistance in Cervical Epithelial Cells Is Associated With Modulation of the Cortical Acto-Myosin. Reprod. Sci. 13, 579–591 (2006). https://doi.org/10.1016/j.jsgi.2006.09.002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2006.09.002

Key words

Navigation