Skip to main content
Log in

Combined Thyroidectomy and Renal Denervation Suppress Renin Expression and Secretion in Fetal Sheep

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Background and objectives

Activity of the fetal renin-angiotensin system (RAS) is developmentally regulated, increasing in late gestation toward tenn. Thyroid hormone and the renal nerves are both important modulators of renal RAS maturation; however, ablation of either influence alone does not totally block the aforementioned developmental late gestation increase in RAS in fetal sheep. In the current study, we used the technique of thyroidectomy combined with bilaterl renal denervation (TX+D), which removes thyroid hormone from the circulation and abolishes effects of renal nerve activity, to determine if simultaneous removal of their effects on the kidney would markedly alter renin expression and secretion in late gestation.

Methods

TX+D was performed at 120 days of gestation age (dGA). Control fetuses were sham-operated. Immediately before necropsy (∼ 138 dGA), fetuses were infused with isoproterenol to examine plasma acive and prorenin changes in response to beta-adrenergic stimulation.

Results

TX+D decreased plasma thyroid hormone concentrations, renal renin mRNA, renal active and prorenin levels, and plasma active and prorenin concentrations. Isoproterenol-induced increases in plasma active renin were also reduced in TX+D fetuses. TX+D did not alter renal angioensin (Ang) II subtype receptor (AT2) expression close to term.

Conclusion

These findings suggest that TX+D synergize in the suppression of fetal renin expression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anderson KM, Peach MJ. Receptor binding and internalization of a unique biologically active angiotensin II-colloidal gold conjugate: Morphological analysis of angiotensin II processing in isolated vascular strips. J Vasc Res 1994;31:10–17.

    Article  CAS  Google Scholar 

  2. Gomez RA, Robillard JE. Developmental aspects of the renal responses to hemorrhage during converting-enzyme inhibition in fetal lambs. Circ Res 1984;54:301–312.

    Article  CAS  Google Scholar 

  3. Robillard JE, Weismann DN, Gomez RA, Ayres NA, Lawton WJ, VanOrden DE. Renal and adrenal responses to converting-enzyme inhibition in fetal and newborn life. Am J Physiol 1983;244:R249–R256.

    CAS  PubMed  Google Scholar 

  4. Carbone GM, Sheikh AU, Rogers S, Brewer G, Rose JC. Developmental changes in renin gene expression in ovine kidney cortex. Am J Physiol 1993;264:R591–R596.

    Article  CAS  Google Scholar 

  5. Siegel S, Parkhill T. The effects of angiotensin II, saralasin, and furosemide on inactive renin in the fetal lamb. Pediatr Res 1980;14:1353–1355.

    Article  CAS  Google Scholar 

  6. Stanley JR, Giammattei CE, Sheikh AU, Green JL, Zehnder T, Rose JC. Effects of chronic infusion of angiotensin II on renin and blood pressure in the late-gestation fetal sheep. Am J Obstet Gynecol 1997;176:931–937.

    Article  CAS  Google Scholar 

  7. Wang J, Perez FM, Rose JC. Developmental changes in renin-containing cells from the ovine fetal kidney. J Soc Gynecol Investig 1997;4:191–196.

    Article  CAS  Google Scholar 

  8. Broughton PF, Kirkpatrick SM, Lumbers ER, Mott JC. Renin and angiotensin-like levels in foetal, new-born and adult sheep. J Physiol 1974;241:575–588.

    Article  Google Scholar 

  9. Broughton PF, Lumbers ER, Mott JC. Plasma renin and angiotensin II in conscious pregnant ewes and their lambs. J Physiol 1974;237:52P–53P.

    Google Scholar 

  10. Dzau VJ, Herrmann HC. Hormonal control of angiotensinogen production. Life Sci 1982;30:577–584.

    Article  CAS  Google Scholar 

  11. Robillard JE, Page WV, Mathews MS, Schutte BC, Nuyt AM, Segar JL. Differential gene expression and regulation of renal angiotensin II receptor subtypes (AT1 and AT2) during fetal life in sheep. Pediatr Res 1995;38:896–904.

    Article  CAS  Google Scholar 

  12. Robillard JE, Schutte BC, Page WV, Fedderson JA, Porter CC, Segar JL. Ontogenic changes and regulation of renal angiotensin II type 1 receptor gene expression during fetal and newborn life. Pediatr Res 1994;36:755–762.

    Article  CAS  Google Scholar 

  13. Fraser M, Liggins GC. Thyroid hormone kinetics during late pregnancy in the ovine fetus. J Dev Physiol 1988;10:461–471.

    CAS  PubMed  Google Scholar 

  14. Chen K, Carey LC, Valego NK, Liu J, Rose JC. Thyroid hormone modulates renin and ANG II receptor expression in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2005;289:R1006–R1014.

    Article  CAS  Google Scholar 

  15. Holmer S, Rinne B, Eckardt KU, et al. Role of renal nerves for the exprssion of renin in adult rat kidney. Am J Physiol 1994;266:F738–F745.

    CAS  PubMed  Google Scholar 

  16. Ito H, Wang J, Strandhoy JW, Rose JC. Importance of the renal nerves for basal and stimulated renin mRNA levels in fetal and adult ovine kidneys. J Soc Gynecol Investig 2001;8:327–333.

    Article  CAS  Google Scholar 

  17. Zhang Y, Morgan T, Read G. The role of the renal nerves in renin synthesis. Clin Exp PlaPharmacol Physiol 1992;19:827–831.

    Article  CAS  Google Scholar 

  18. Draper ML, Wang J, Valego N, Block WA Jr, Rose JC. Effect of renal denervation on renin gene expression, concentration, and secretion in matureovine fetus. Am J Physiol Regul Integr Comp Physiol 2000;279:R263–R270.

    Article  CAS  Google Scholar 

  19. Fommei E, Iervasi G. The role of thyroid hormone in blood pressure homeostasis: Evidence from short-term hypothyroidism in humans. J Clin Endocrinol Metab 2002;87:1996–2000.

    Article  CAS  Google Scholar 

  20. Hopkins PS, Thorburn GD. The effects of foetal thyroidectomy on the development of the ovine foetus. J Endocrinol 1972;54:55–66.

    Article  CAS  Google Scholar 

  21. Robillard JE, Nakamura KT, DiBona GF. Effects of renal denervation on renal responses to hypoxemia in fetal lambs. Am J Physiol 1986;250:F294–F301.

    CAS  PubMed  Google Scholar 

  22. Segar JL, Barna TJ, Acarregui MJ, Lamb FS. Responses of fetal ovine systemic and umbilical arteries to angiotensin II. Pediatr Res 2001;49:826–833.

    Article  CAS  Google Scholar 

  23. Karen P, Morris BJ. Stimulation by thyroid hormone of renin mRNA in mouse submandibular gland. Am J Physiol 1986;251:E290–E293.

    CAS  PubMed  Google Scholar 

  24. Polk DH. Thyroid hormone metabolism during development. Reprod Fertil Dev 1995;7:469–477.

    Article  CAS  Google Scholar 

  25. Tronik D, Rougeon F. Thyroxine and testosterone transcriptionally regulate renin gene expression in the submaxillary gland of normal and transgenic mice carrying extra copies of the Ren2 gene. FEBS Lett 1988;234:336–340.

    Article  CAS  Google Scholar 

  26. Nakamura KT, Klinkefus JM, Smith FG, Sato T, Robillard JE. Ontogeny of neuronally released norepinephrine on renin secretion in sheep. Am J Physiol 1989;257:R765–R770.

    CAS  PubMed  Google Scholar 

  27. Bouhnik J, Galen FX, Clauser E, Menard J, Corvol P. The renin-angiotensin system in thyroidectomized rats. Endocrinology 1981;108:647–650.

    Article  CAS  Google Scholar 

  28. el-Dahr SS, Gomez RA, Gray MS, Peach MJ, Carey RM, Chevalier RL. Renal nerves modulate renin gene expression in the developing rat kidney with ureteral obstruction. J Clin Invest 1991;87:800–810.

    Article  CAS  Google Scholar 

  29. Marchant C, Brown L, Sernia C. Renin-angiotensin system in thyroid dysfunction in rats. J Cardiovasc Pharmacol 1993;22:449–455.

    Article  CAS  Google Scholar 

  30. Walker DW, Schuijers JA. Effect of thyroidectomy on cardiovascular responses to hypoxia and tyramine infusion in fetal sheep. J Dev Physiol 1989;12:337–345.

    CAS  PubMed  Google Scholar 

  31. Ichihara A, Kobori H, Miyashita Y, Hayashi M, Saruta T. Differential effects of thyroid hormone on renin secretion, content, and mRNA in juxtaglomerular cells. Am J Physiol 1998;274:E224–E231.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Kobori H, Hayashi M, Saruta T. Thyroid hormone stimulates renin gene expression through the thyroid hormone response element. Hypertension 2001;37:99–104.

    Article  CAS  Google Scholar 

  33. Page WV, Perlman S, Smith FG, Segar JL, Robillard JE. Renal nerves modulate kidney renin gene expression during the transition from fetal to newborn life. Am J Physiol 1992;262:R459–R463.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Rose PhD.

Additional information

Supported by National Insnitutes of Health Grant No. HD 17644

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Carey, L.C., Valego, N.K. et al. Combined Thyroidectomy and Renal Denervation Suppress Renin Expression and Secretion in Fetal Sheep. Reprod. Sci. 13, 604–609 (2006). https://doi.org/10.1016/j.jsgi.2006.07.006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2006.07.006

Key words

Navigation