Skip to main content

Advertisement

Log in

Nuchal Edema and Venous-Lymphatic Phenotype Disturbance in Human Fetuses and Mouse Embryos With Aneuploidy

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

Nuchal edema (NE) is a clinical indicator for aneuploidy, cardiovascular anomalies, and several genetic syndromes. Its etiology, however, is unknown. In the nuchal area, the endothelium of the jugular lymphatic sacs (JLS) develops by budding from the blood vascular endothelium of the cardinal veins. Abnormal distension of the jugular sacs is associated with NE. We hypothesize that a disturbed lymphatic endothelial differentiation and sac formation causes NE. We investigated endothelial differentiation of the jugular lymphatic system in human and mouse species with NE.

Methods

Aneuploid human fetuses (trisomy 21; trisomy 18) were compared with euploid controls (gestational age 12 to 18 weeks). Trisomy 16 mouse embryos were compared with wild type controls (embryonic day 10 to 18). Trisomy 16 mice are considered an animal model for human trisomy 21. Endothelial differentiation was investigated by immunohistochemistry using lymphatic markers (prox-1, podoplanin, lymphatic vessel endothelial hyaluronan receptor [LYVE]-1) and en blood vessel markers (neuropilin [NP]-1 and ligand vascular endothelial growth factor [VEGF]-A). Smooth muscle actin (SMA) was included as a smooth muscle cell marker.

Results

We report a disturbed venous-lymphatic phenotype in aneuploid human fetuses and mouse embryos with enlarged jugular sacs and NE. Our results show absent or diminished expression of the lymphatic markers Prox-1 and podoplanin in the enlarged jugular sac, while LYVE-1 expression was normal. Additionally, the enlarged fLS showed blood vessel characteristics, including increased NP-1 and VEGF-A expression. The lumen contained blood cells and smooth muscle cells lined the wall. CONCLUSION: A loss of lymphatic identity seems to be the underlying cause for clinical NE. Also, abnormal endothelial differentiation provides a link to the cardiovascular anomalies associated with NE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sabin FR. The lymphatic system in human embryos, with a consideration of the morphology of the system as a whole. Am J Anat 1909;9:43–91.

    Article  Google Scholar 

  2. Wigle JT, Oliver G. Prox1 function is required for the development of the murine lymphatic system. Cell 1999;98:769–78.

    Article  CAS  Google Scholar 

  3. Petrova TV, Makinen T, Makela TP, et al. Lymphatic endothelial reprogramming of vascular endothelial cells by the Prox-1 homeobox transcriptions factor. EMBO J 2002;21:4593–9.

    Article  CAS  Google Scholar 

  4. Haak MC, Bartelings MM, Jackson DG, Webb S, Van Vugt JMG, Gittenberger-de Groot AC. Increased nuchal translucency is associated with jugular lymphatic distension. Hum Reprod 2002;17:1086–92.

    Article  Google Scholar 

  5. Gittenberger-De Groot AC, Van Den Akker NM, Bartelings MM, Webb S, van Vugt JM, Haak MC. Abnormal lymphatic development in trisomy 16 mouse embryos precedes nuchal edema. Dev Dyn 2004;230:378–84.

    Article  Google Scholar 

  6. Bekker MN, Haak MC, Rekoert-Hollander M, Twisk JWR, van Vugt JMG. Increased nuchal translucency and distended jugular lymphatic sacs by first-trimester ultrasound. Ultrasound Obstet Gynecol 2005;25:239–45.

    Article  CAS  Google Scholar 

  7. Webb S, Brown NA, Anderson RH. Cardiac morphology at late fetal stages in the mouse with trisomy 16: Consequences for different formation of the antioventricular junction when compared to humans with trisomy 21. Cardiovasc Res 1997;34:515–24.

    Article  CAS  Google Scholar 

  8. Schacht V, Ramirez MI, Hong YK, et al. T1 alpha/podoplanin deficiency disrupts lymphatic vasculature formation and causes lymphedema. EMBO J 2003;22:3546–56.

    Article  CAS  Google Scholar 

  9. Karkkainen MJ, Alitalo K. Lymphatic endothelial regulation, lymphoedema, and lymph node metastasis. Semin Cell Dev Biol 2002;13:9–18.

    Article  CAS  Google Scholar 

  10. Lymboussaki A, Olofsson B, Eriksson U, Alitalo K. Vascular endothelial growth factor (VEGF) and VEGF-C show overlapping binding sites in embryonic endothelia and distinct sites in differentiated adult endothelia. Circ Res 1999;85:992–9.

    Article  CAS  Google Scholar 

  11. Yuan L, Moyon D, Pardanaud L, et al. Abnormal lymphatic vessel development in neutropilin 2 mutant mice. Development 2002;129:4797–806.

    CAS  PubMed  Google Scholar 

  12. Flamme I, von Reutern M, Drexler HC, Syed-Ali S, Risau W. Overexpression of vascular endothelial growth factor in the avian embryo induces hypervascularization and increased vascular permeability without alterations of embryonic pattern formation. Dev Biol 1995;171:399–414.

    Article  CAS  Google Scholar 

  13. Larcher F, Murillas R, Bolontrade M, Conti CJ, Jorcano JL. VEGF/VPF overexpression in skin of transgenic mice induces angiogenesis, vascular hyperpermeability and accelerated tumor development. Oncogene 1998;17:303–11.

    Article  CAS  Google Scholar 

  14. Nagy JA, Vasile E, Feng D, et al. Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 2002;196:1497–506.

    Article  CAS  Google Scholar 

  15. Martyn U, Schulte-Merker S. Zebrafish neuropilins are differentially expressed and interact with vascular endothelial growth factor during embryonic vascular development. Dev Dyn 2004;231:33–42.

    Article  CAS  Google Scholar 

  16. Webb S, Browne NA, Anderson RN. Cardiac morphology at late fetal stages in the mouse with trisomy 16: Consequences for different formation of the atrioventricular junction when compared to humans with trisomy 21. Cardiovasc Res 1997;34:515–24.

    Article  CAS  Google Scholar 

  17. Jackson DG. Biology of the lymphatic marker LYVE-1 and application in research into lymphatic tracking and lymphangiogenesis. APMIS 2004;112:526–38.

    Article  CAS  Google Scholar 

  18. Soker S, Miao HQ, Nomi M, Takashima S, Klagsburn M. VEGF165 mediates formation of complexes containing VEGFR-2 and neuroplin-1 that enhance VEGF165-receptor binding. J Cell Biochem 2002;85:357–68.

    Article  CAS  Google Scholar 

  19. Kawasaki T, Kitsukawa T, Bekku Y, et al. A requirement for neuropilin-1 in enbryonic vessel formation. Development 1999;126:4895–902.

    CAS  PubMed  Google Scholar 

  20. Yamada Y, Takakura N, Yasue H, Ogawa H, Fujisawa H, Suda T. Exogenous clustered neuropilin 1 enhances vasculogenesis and angiogenesis. Blood 2001;97:1671–8.

    Article  CAS  Google Scholar 

  21. Bates DO, Harper SJ. Regulation of vascular permeability by vascular endothelial growth factors. Vasc Pharmacol 2002;39:225–37.

    Article  CAS  Google Scholar 

  22. Hattori M, Fujiyama A, Taylor TD, et al. The DNA sequence of human chromosome 21. Nature 2000;405:311–9.

    Article  CAS  Google Scholar 

  23. Nagy JA, Vasile E, Feng D, et al. VEGF-A induces angiogenesis, arteriogenesis, lymphangiogenesis, and vascular malformations. Cold Spring Harb Symp Quant Biol 2002;67:227–37.

    Article  CAS  Google Scholar 

  24. Petrova TV, Karpanen T, Norrmen C, et al. Defective valves and abnormal mural cell recruitment underlie lymphatic vascular failure in lymphedema distichiasis. Nat Med 2004;10:974–81.

    Article  CAS  Google Scholar 

  25. Wigle JT, Harvey N, Detmar M, et al. An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype. EMBO J 2002;21:1505–13.

    Article  CAS  Google Scholar 

  26. Pandya PP, Kondylios A, Hilbert L, Snijders RJ, Nicolaides KH. Chromosomal defects and outcome in 1015 fetuses with increased nuchal translucency. Ultrasound Obstet Gynecol 1995;5:15–9.

    Article  CAS  Google Scholar 

  27. Bekker MN, Arkestejin JB, Van Den Akker NM, et al. Increased NCAM expression and vascular development in trisomy 16 mouse embryos: Relationship with nuchal translucency. Pediatr Res 2005;58:1222–7.

    Article  CAS  Google Scholar 

  28. Akitaya T, Bronner-Fraser M. Expression of cell adhesion molecules during initiation and cessation of neural creast cell migration. Dev Dyn 1992;194:12–20.

    Article  CAS  Google Scholar 

  29. Walsh FS, Doherty P. Neural cell adhesion molecules of the immunoglobulin superfamily: Role in axon growth and guidance. Annu Rev Cell Dev Biol 1997;13:425–56.

    Article  CAS  Google Scholar 

  30. Osborne NJ, Begbie J, Chilton JK, Schmidt H, Eickholt BJ. Semaphorin/neuropilin signaling influences the positioning of migratory neural crest cells within the hindbrain region of the chick. Dev Dyn 2005;232:939–49.

    Article  CAS  Google Scholar 

  31. Mukouyama YS, Gerber HP, Ferrara N, Gu C, Anderson DJ. Peripheral nerve-derived VEGF promotes arterial differentiation via neuropilin 1-mediated positive feedback. Development 2005;132:941–52.

    Article  CAS  Google Scholar 

  32. Torii M, Matsuzaki F, Osumi N, et al. Transcription factors Mash-1 and Prox-1 delineate early steps in differentiation of neural stem cells in the developing central nervous system. Development 1999;126:443–56.

    CAS  PubMed  Google Scholar 

  33. Hyett J, Moscoso G, Papapanagiotou G, Perdu M, Nicolaides KH. Abnormalities of the heart and great arteries in chromosomally normal fetuses with increased nuchal translucency thickness at 11-13 weeks of gestation. Ultrasound Obstet Gynecol 1996;7:245–50.

    Article  CAS  Google Scholar 

  34. Hyett J, Moscoso G, Nicolaides K. Abnormalities of the heart and great arteries in first trimester chromosomally abnormal fetuses. Am J Med Genet 1997;69:207–16.

    Article  CAS  Google Scholar 

  35. Waller BR III, McQuinn T, Phelps AL, et al. Conotruncal anomalies in the trisomy 16 mouse: An immunohistochemical analysis with emphasis on the involvement of the neural crest. Anat Rec 2000;260:279–93.

    Article  Google Scholar 

  36. Bergwerff M, DeRuiter MC, Hall S, Poelmann RE, Gittenberger-De Groot AC. Unique vascular morphology of the fourth aortic arches: Possigle implications for pathogenesis of type-B aortic arch interruption and anomalous right subclavian artery. Cardiovasc Res 1999;44:185–96.

    Article  CAS  Google Scholar 

  37. Kirby ML. Neural crest and the morphogenesis of Down syndrome with special emphasis on cardiovascular development. Prog Clin Biol Res 1991;373:215–25.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana C. Gittenberger-de Groot PhD.

Additional information

The authors thank J. Lens and S. Blankevoort for the graphics and layout and B. Wisse for technical assistance.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekker, M.N., van den Akker, N.M.S., Bartelings, M.M. et al. Nuchal Edema and Venous-Lymphatic Phenotype Disturbance in Human Fetuses and Mouse Embryos With Aneuploidy. Reprod. Sci. 13, 209–216 (2006). https://doi.org/10.1016/j.jsgi.2006.02.003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2006.02.003

Key words

Navigation