Skip to main content

Advertisement

Log in

Expression of Transient Receptor Channel Proteins in Human Fundal Myometrium in Pregnancy

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

Cation channels comprised of transient receptor potential (TrpC) proteins may play a role in signal-regulated calcium entry and calcium homeostasis in myometrium. The objective of this study was to determine the relative abundance of specific TrpC mRNAs expressed in human myometrium and determine if TrpC mRNA and protein concentrations differ in fundal myometrium before and after the onset of labor.

Methods

A quantitative real-time polymerase chain reaction (Q-RT-PCR) procedure was developed for determining the concentration of TrpC mRNA expression in immortalized and primary human myometrial cells and myometrial fundus tissues from patients before and after the onset of labor. The corresponding TrpC proteins were detected by Western blot analysis and immu no h istochem is try.

Results

hTrpC1, 3, 4, 5, 6, and 7 mRNAs were expressed in two lines of immortalized human myometrial cells and in primary human myocytes. In all of these cells, hTrpC1 and hTrpC4 mRNAs were the most abundant? followed by hTrpC6. A similar distribution was observed in fundal myometrium samples from patients before and after the onset of labor. hTrpC4 mRNA was significantly lower after the onset of labor; there were no significant changes in the concentrations of other TrpC mRNAs. Immuno- h is to chemistry identified hTrpCl, 3, 4, and 6 proteins in myometrial smooth muscle cells. Western blot analysis of myometrial membranes demonstrated no statistically significant changes in hTrpCl, 3, 4 and 6 proteins between samples collected before and after the onset of labor.

Conclusions

We have demonstrated that hTrpC1 and hTrpC4 are the most abundant TrpC mRNAs in human myometrium, with TrpC6 being the next most abundant. There was no increase in TrpC mRNA or protein in fundal myometrium with the onset of labor. Nonetheless, these isoforms may play significant roles in signal regulated calcium entry in human myometrium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sanborn BM. Hormones and calcium: Mechanisms controlling uterine smooth muscle contractile activity. The Litchfield Lecture. Exp Physiol 2001;86:223–37.

    Article  CAS  PubMed  Google Scholar 

  2. Wray S, Jones K, Kupittayanant S, et al. Calcium signaling and uterine contractility. J Soc Gynecol Investig 2003;10:252–64.

    Article  CAS  PubMed  Google Scholar 

  3. Sanborn BM, Ku CY, Shlykov SG, Babich LG. Molecular signaling through G protein coupled receptors and the control of intracellular calcium in myometrium. J Soc Gynecol Investig 2005;12:479–87.

    Article  CAS  PubMed  Google Scholar 

  4. Minke B, Cook B. TRP channel proteins and signal transduction. Physiol Rev 2002;82:429–72.

    Article  CAS  PubMed  Google Scholar 

  5. Vazquez G, Wedel BJ, Trebak M, Aziz O, Putney JW Jr. The mammalian TRPC cation channels. Biochem Biophys Acta 2004;1742:707–19.

    Article  CAS  Google Scholar 

  6. Malysz J, Donnelly G, Huizinga JD. Regulation of slow wave frequency by IP(3)-sensitive calcium release in the murine small intestine. Am J Physiol Gastrointest Liver Physiol 2001;280:G439–G48.

    Article  CAS  PubMed  Google Scholar 

  7. Welsh DG, Morielli AD, Nelson MT, Brayden JE. Transient receptor potential channels regulate myogenic tone of resistance arteries. Circ Res 2002;90:248–50.

    Article  CAS  PubMed  Google Scholar 

  8. Sweeney M, Yu Y, Platoshyn O, Zhang S, McDaniel SS, Yuan JX. Inhibition of endogenous TRP1 decreases capacitative Ca2+ entry and attenuates pulmonary artery smooth muscle cell proliferation. Am J Physiol Lung Cell Mol Physiol 2002;283:L144–L55.

    Article  CAS  PubMed  Google Scholar 

  9. Clapham DE. TRP channels as cellular sensors. Nature 2004;426:517–24.

    Article  CAS  Google Scholar 

  10. Monga M, Campbell DF, Sanborn BM. Oxytocin-stimulated capacitative calcium entry in human myometrial cells. Am J Obstet Gynecol 1999;181:424–29.

    Article  CAS  PubMed  Google Scholar 

  11. Yang M, Gupta A, Shlykov SG, Corrigan R, Tsujimoto S, Sanborn BM. Multiple Trp isoforms implicated in capacitative calcium entry are expressed in human pregnant myometrium and myometrial cells. Biol Reprod 2002;67:988–94.

    Article  CAS  PubMed  Google Scholar 

  12. Shlykov SG, Yang M, Alcorn JL, Sanborn BM. Capacitative cation entry in human myometrial cells and augmentation by hTrpC3 overexpression. Biol Reprod 2003;69:647–55.

    Article  CAS  PubMed  Google Scholar 

  13. Shlykov SG, Sanborn BM. Stimulation of intracellular Ca(2+) oscillations by diacyglycerol in human myometrial cells. Cell Calcium 2004;36:157–64.

    Article  CAS  PubMed  Google Scholar 

  14. Waldron R, Short A, Gill DL. Store-operated Ca2+ entry and coupling to Ca2+ pool depletion in thapsigargin-resistant cells. J Biol Chem 1997;272:6440–6447.

    Article  CAS  PubMed  Google Scholar 

  15. Zhu X, Jiang M, Birnbaumer L. Receptor-activated Ca2+ influx via human Trp3 stably expressed in human embryonic kidney (HEK)293 cells. Evidence for a non-capacitative Ca2+ entry. J Biol Chem 1998;273:133–142.

    Article  CAS  PubMed  Google Scholar 

  16. Dalrymple A, Slater DM, Beech D, Poston L, Tribe RM. Molecular identification and localization of Trp homologues, putative calcium channels, in pregnant human uterus. Mol Hum Reprod 2002;8:946–951.

    Article  CAS  PubMed  Google Scholar 

  17. Dalrymple A, Slater DM, Poston L, Tribe RM. Physiological induction of transient receptor potential canonical proteins, calcium entry channels, in human myometrium: Influence of pregnancy, labor, and interleukin-1 beta. J Clin Endocrinol Metab 2004;89:1291–300.

    Article  CAS  PubMed  Google Scholar 

  18. Luckas MJ, Wray S. A comparison of the contractile properties of human myometrium obtained from the upper and lower uterine segments. BJOG 2000;107:1309–11.

    Article  CAS  PubMed  Google Scholar 

  19. Monga M, Ku CY, Dodge K, Sanborn BM. Oxytocin-stimulated responses in a pregnant human immortalized myometrial cell line. Biol Reprod 1996;55:427–32.

    Article  CAS  PubMed  Google Scholar 

  20. Burghardt RC, Barhoumi R, Stickney M, Monga M, Ku CY, Sanborn BM. Correlation between connexin43 expression, cell-cell communication, and oxytocin-induced Ca2+ responses in an immortalized human myometrial cell line, Biol Reprod 1996;55:433–8.

    Article  CAS  PubMed  Google Scholar 

  21. Havelock J, Keller P, Muleba N, Mayhew BA. Human myometrial gene expression before and during parturition. Biol Reprod 2002;72:707–19.

    Article  CAS  Google Scholar 

  22. Ku CY, Qian A, Wen Y, Answer K, Sanborn BM. Oxytocin stimulates myometrial guanosine triphosphatase and phospholipase-C activities via coupling to Gαq/11. Endocrinology 1995;136:1509–15.

    Article  CAS  PubMed  Google Scholar 

  23. Ku CY, Word A, Sanborn BM. Differential expression of protein kinase A, AKAP79 and PP2B in pregnant human myometrial membranes prior to and during labor. J Soc Gynecol Investig 2005;12:1509–15.

    Article  CAS  Google Scholar 

  24. Babich LG, Ku CY, Young HW, Huang H, Blackburn MR, Sanborn BM. Expression of capacitative calcium TrpC proteins in rat myometrium during pregnancy. Biol Reprod 2004;70:919–24.

    Article  CAS  PubMed  Google Scholar 

  25. Freichel M, Suh SH, Pfeifer A, et al. Lack of an endothelial store-operated Ca2+ current impairs agonist-dependent vasorelaxation in TRP4-/- mice. Nat Cell Biol 2001;3:121–27.

    Article  CAS  PubMed  Google Scholar 

  26. Freichel M, Philipp S, Cavalie A, Flockerzi V. TRPC4 and TRPC4-deficient mice. Mammalian TRP channels as molecular targets. Novartis Found Symp 2004;258:189–203.

    CAS  PubMed  Google Scholar 

  27. Hoare S, Copland JA, Strakova Z, et al. The proximal portion of the COOH terminus of the oxytocin receptor is required for coupling to Gq, but not Gi. Independent mechanisms for elevating intracellular calcium concentrations from intracellular stores. J Biol Chem 1999;274:28682–9.

    Article  CAS  PubMed  Google Scholar 

  28. Lintschinger B, Balzer-Geldsetzer M, Baskaran T, et al. Coassembly of Trp1 and Trp3 proteins generates diacylglycerol- and Ca2+-sensitive cation channels. J Biol Chem 2000;275:27799–805.

    CAS  PubMed  Google Scholar 

  29. Hofmann T, Schaefer M, Schultz G, Gudermann T. Subunit composition of mammalian transient receptor potential channels in living cells. Proc Natl Acad Sci U S A 2002;99:7461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Beech DJ, Xu SZ, McHugh D, Fleming R. TRPC1 store-operated cationic cchannel subunit. Cell Calcium 2003;33:433–40.

    Article  CAS  PubMed  Google Scholar 

  31. Strubing C, Krapivinsky G, Krapivinsky L, Clapham DE. Formation of novel TRPC channels by complex subunit interactions in embryonic brain. J Biol Chem 2003;278:39014–9.

    Article  PubMed  Google Scholar 

  32. Xu X-ZS, Li H-S, Guggino WB, Montell C. Coassembly of TRP and TRPL produces a distinct store-operated conductance. Cell 1997;89:1155–64.

    Article  CAS  PubMed  Google Scholar 

  33. Schilling WP, Goel M. Mammalian TRPC channel subunit assembly. Novartis Found Symp 2004;258:18–30.

    CAS  PubMed  Google Scholar 

  34. Liu X, Bandyopadhayay B, Singh B, Groschner K, Ambudkar IS. Molecular analysis of a store-operated and OAG sensitive non-selective cation channel: Heteromeric assembly of TRPC1 and TRPC3. J Biol Chem 2005;280:21600–6.

    Article  CAS  PubMed  Google Scholar 

  35. Suh P-G, Hwang J-I, Ryu SH, Donowitz M, Kim JH. The roles of PDZ-containing proteins in PLC-β-mediated signaling. Biochem Biophys Res Commun 2001;288:1–7.

    Article  CAS  PubMed  Google Scholar 

  36. Plant TD, Schaefer M. Receptor-operated Ca2+ permeable non-selective cation channels. Cell Calcium 2003;33:441–50.

    Article  CAS  PubMed  Google Scholar 

  37. Tang J, Lin Y, Zhang Z, Tikunova S, Birnbaumer L, Zhu MX. Identification of common binding sites for calmodulin and inositol 1,4,5-trisphosphate receptors on the carboxyl termini of trp channels. J Biol Chem 2001;276:21303–10.

    Article  CAS  PubMed  Google Scholar 

  38. Wang X, Pluznick JL, Wei P, Padanilam BJ, Sansom SC. TRPC4 forms store-operated Ca2+ channels in mouse mesangial cells. Am J Physiol Cell Physiol 2004;287:C357–C64.

    Article  CAS  PubMed  Google Scholar 

  39. Maroto R, Rasdo A, Wood T, Kurosky A, Martinac B, Hamill O. TRPC1 forms the stretch activated cation channel in vertebrae cells. Nat Cell Biol 2005;7:179–85.

    Article  CAS  PubMed  Google Scholar 

  40. Gibb W, Challis JR. Mechanisms of term and preterm birth. J Obstet Gynaecol Can 2002;24:874–83.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang L, Saffen D. Muscarinic acetylcholine receptor regulation of TRP6 Ca2+ channel isoforms. J Biol Chem 2001;276:13331–9.

    Article  CAS  PubMed  Google Scholar 

  42. Crane A, Aguilar B. Assembly, maturation, and turnover of K(ATP) channel subunits. J Biol Chem 2004;279:9080–90.

    Article  CAS  PubMed  Google Scholar 

  43. Winston N, Johnson M, McConnell J, Cook D, Day MC. Expression and role of the ether-a-go-go-related (MERG1A) potassium channel protein during preimplanatation mouse development. Biol Reprod 2004;70:1070–9.

    Article  CAS  PubMed  Google Scholar 

  44. Cohen-Tannoudji J, Mhaouty S, Elwardy-Merezak J, et al. Regulation of myometrial Gi2, Gi3, and Gq expression during pregnancy. Effects of progesterone and estradiol. Biol Reprod 1995;53:55–64.

    Article  CAS  PubMed  Google Scholar 

  45. Dodge KL, Carr DW, Yue C, Sanborn BM. A role for AKAP (A kinase anchoring protein) scaffolding in the loss of a cyclic adenosine 3′,5′-monophosphate inhibitory response in late pregnant rat myometrium. Mol Endocrinol 1999;13:1977–87.

    CAS  PubMed  Google Scholar 

  46. Lopez-Bernal A. Mechanisms of labour—Biochemical aspects. BJOG 2003;110:39–45.

    PubMed  Google Scholar 

  47. Gudermann T, Hofmann T, Schnitzler MM, Dietrich A. Activation, subunit composition and physiological relevance of DAG-sensitive TRPC proteins. Mammalian TRP channels as molecular targets. Novartis Found Symp 2004;258:103–22.

    CAS  PubMed  Google Scholar 

  48. Putney JW Jr, Trebak M, Vazquez G, Wedel BJ, Bird GS. Signalling mechanisms for TRPC3 channels. Novartis Found Symp 2004;258:123–33.

    CAS  PubMed  Google Scholar 

  49. Venkatachalam K, Zheng F, Gill DL. Regulation of canonical transient receptor potential (TRPC) channel function by diacylglycerol and protein kinase C, J Biol Chem 2003;278:29031–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Ying Ku PhD.

Additional information

Supported by HD38970 (B.M.S.) and HD11149 (R.A.W.).

The authors acknowledge the assistance of Dianna Campbell in obtaining specimens in Houston and Jennifer Phillips for assistance in the preparation of the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ku, CY., Babich, L., Word, R.A. et al. Expression of Transient Receptor Channel Proteins in Human Fundal Myometrium in Pregnancy. Reprod. Sci. 13, 217–225 (2006). https://doi.org/10.1016/j.jsgi.2005.12.007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2005.12.007

Key words

Navigation