Skip to main content
Log in

The Molecular Pathophysiology of Bacterially Induced Preterm Labor: Insights From the Murine Model

  • Review Article
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Premature delivery, the most important problem in obstetrics in developed countries, continues to vex clinicians and researchers. Despite decades of investigation, the pathophysiology of premature labor is incompletely understood, and therapies or preventive strategies tailored to each of the many potential causes do not exist. The present review addresses one cause of prematurity, namely, intrauterine bacterial infection. Given the vastness of the literature for even this single etiology, we focus on the mouse as a model organism from which much can be learned about mammalian parturition. The underpinnings of bacterially induced labor are believed to involve a signaling cascade that begins with recognition of offending pathogens by cell-surface receptors (toll-like receptors). This cascade then operates through multiple branching and redundant pathways to bring about the changes within the gestational compartment that produce cervical ripening, labor, and ultimately delivery. The major challenge facing researchers is to understand the levels of complexity in the host response, so that prevention and treatment strategies may be sufficiently focused to minimize unwanted side effects, yet sufficiently broad to be effective. Given the complexity of the problem, this understanding can be aided by efficient model systems, of which one in vivo example is the mouse, an organism that shares with humans many similarities in the biochemical and molecular aspects of inflammation-induced preterm labor. We propose that tools with the power to assess simultaneously the myriad elements of the hypothesized signaling cascade (ie, genomic and proteomic technologies) are important components of the solution to the puzzle of parturition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Preterm labor. ACOG Technical Bulletin. Vol 206. Washington, DC: American College of Obstetricians and Gynecologists, 1995.

    Google Scholar 

  2. Goldenberg RL, Hauth JC, Andrews WW. Intrauterine infection and preterm delivery. N Engl J Med 2000;342:1500–7.

    CAS  PubMed  Google Scholar 

  3. Slattery MM, Morrison JJ. Preterm delivery. Lancet 2002;360:1489–97.

    Article  PubMed  Google Scholar 

  4. Romero R, Espinoza J, Chaiworapongsa T, Kalache K. Infection and prematurity and the role of preventive strategies. Semin Neonatol 2002;7:259–74.

    Article  PubMed  Google Scholar 

  5. Ruiz RJ, Fullerton J, Dudley DJ. The interrelationship of maternal stress, endocrine factors and inflammation on gestational length. Obstet Gynecol Surv 2003;58:415–28.

    PubMed  Google Scholar 

  6. da Fonseca EB, Bittar RE, Carvalho MH, Zugaib M. Prophylactic administration of progesterone by vaginal suppository to reduce the incidence of spontaneous preterm birth in women at increased risk: A randomized placebo-controlled double-blind study. Am J Obstet Gynecol 2003;188:419–24.

    PubMed  Google Scholar 

  7. Meis PJ, Klebanoff M, Thorn E, et al. Prevention of recurrent preterm delivery by 17 alpha-hydroxyprogesterone caproate. N Engl J Med 2003;348:2379–85.

    Article  CAS  PubMed  Google Scholar 

  8. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol 2003;21:335–76.

    Article  CAS  PubMed  Google Scholar 

  9. Zarember KA, Godowski PJ. Tissue expression of human Tolllike receptors and differential regulation of Toll-like receptor mRNAs in leukocytes in response to microbes, their products, and cytokines. J Immunol 2002;168:554–61.

    Article  CAS  PubMed  Google Scholar 

  10. Mazzoni A, Segal DM. Controlling the toll road to dendritic cell polarization. J Leukoc Biol 2004;75:721–30.

    Article  CAS  PubMed  Google Scholar 

  11. Molloy EJ, O’Neill A J, Grantham JJ, et al. Labor induces a maternal inflammatory response syndrome. Am J Obstet Gynecol 2004;190:448–55.

    Article  PubMed  Google Scholar 

  12. Holmlund U, Cebers G, Dahlfors AR, et al. Expression and regulation of the pattern recognition receptors toll-like receptor-2 and toll-like receptor-4 in the human placenta. Immunology 2002;107:145–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kumazaki K, Nakayama M, Yanagihara I, Suehara N, Wada Y. Immunohistochemical distribution of toll-like receptor 4 in term and preterm human placentas from normal and complicated pregnancy including chorioamnionitis. Hum Pathol 2004;35:47–54.

    Article  CAS  PubMed  Google Scholar 

  14. Harju K, Glumoff V, Hallman M. Ontogeny of toll-like receptors Tlr2 and Tlr4 in mice. Pediatr Res 2001;49:81–3.

    Article  CAS  PubMed  Google Scholar 

  15. Romero R, Gomez R, Ghezzi F, et al. A fetal systemic inflammatory response is followed by the spontaneous onset of preterm parturition. Am J Obstet Gynecol 1998;179:186–93.

    Article  CAS  PubMed  Google Scholar 

  16. Liggins GC, Fairclough RJ, Grieves SA, Forster CS, Knox BS. Parturition in the sheep. In: Knight J, O’Connor M, eds. The fetus and birth. Amsterdam: Elsevier, 1977:5–30.

    Google Scholar 

  17. Osman I, Young A, Ledingham MA, et al. Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes, decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod 2003;9:41–5.

    Article  CAS  PubMed  Google Scholar 

  18. YeUon SM, Mackler AM, Kirby MA. The role of leukocyte traffic and activation in parturition. J Soc Gynecol Investig 2003;10:323–38.

    Article  Google Scholar 

  19. Romero R, Tartakovsky B. The natural interleukin-1 receptor antagonist prevents interleukin-1-induced preterm delivery in mice. Am J Obstet Gynecol 1992;167:1041–5.

    Article  CAS  PubMed  Google Scholar 

  20. Jeyabalan A, Caritis SN. Pharmacologic inhibition of preterm labor. Clin Obstet Gynecol 2002;45:99–113.

    Article  PubMed  Google Scholar 

  21. Terrone DA, Rinehart BK, Granger JP, Barrilleaux PS, Martin JN Jr, Bennett WA. Interleukin-10 administration and bacterial endotoxin-induced preterm birth in a rat model. Obstet Gynecol 2001;98:476–80.

    CAS  PubMed  Google Scholar 

  22. Buhimschi IA, Buhimschi CS, Weiner CP. Protective effect of N-acetylcysteine against fetal death and preterm labor induced by maternal inflammation. Am J Obstet Gynecol 2003;188:203–8.

    Article  CAS  PubMed  Google Scholar 

  23. Kimura T, Ogita K, Kusui C, Ohashi K, Azuma C, Murata Y. What knockout mice can tell us about parturition. Rev Reprod 1999;4:73–80.

    Article  CAS  PubMed  Google Scholar 

  24. Cook JL, Zaragoza DB, Sung DH, Olson DM. Expression of myometrial activation and stimulation genes in a mouse model of preterm labor: Myometrial activation, stimulation, and preterm labor. Endocrinology 2000;141:1718–28.

    Article  CAS  PubMed  Google Scholar 

  25. Gross G, Imamura T, Muglia LJ. Gene knockout mice in the study of parturition. J Soc Gynecol Investig 2000;7:88–95.

    CAS  PubMed  Google Scholar 

  26. Hirsch E, Muhle RA, Mussalli GM, Blanchard R. Bacterially induced preterm labor in the mouse does not require maternal interleukin-1 signaling. Am J Obstet Gynecol 2002;186:523–30.

    Article  PubMed  Google Scholar 

  27. Astle S, Slater DM, Thornton S. The involvement of progesterone in the onset of human labour. Eur J Obstet Gynecol Reprod Biol 2003;108:177–81.

    Article  CAS  PubMed  Google Scholar 

  28. Condon JC, Jeyasuria P, Faust JM, Wilson JW, Mendelson CR. A decline in the levels of progesterone receptor coactivators in the pregnant uterus at term may antagonize progesterone receptor function and contribute to the initiation of parturition. Proc Natl Acad Sci U S A 2003;100:9518–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Haluska GJ, Wells TR, Hirst JJ, Brenner RM, Sadowsky DW, Novy MJ. Progesterone receptor localization and isoforms in myometrium, decidua, and fetal membranes from rhesus macaques: evidence for functional progesterone withdrawal at parturition. J Soc Gynecol Investig 2002;9:125–36.

    CAS  PubMed  Google Scholar 

  30. Mesiano S, Chan EC, Fitter JT, Kwek K, Yeo G, Smith R. Progesterone withdrawal and estrogen activation in human parturition are coordinated by progesterone receptor A expression in the myometrium. J Clin Endocrinol Metab 2002;87:2924–30.

    Article  CAS  PubMed  Google Scholar 

  31. Henderson D, Wilson T. Reduced binding of progesterone receptor to its nuclear response element after human labor onset. Am J Obstet Gynecol 2001;185:579–85.

    Article  CAS  PubMed  Google Scholar 

  32. Tibbetts TA, Conneely OM, O’Malley BW. Progesterone via its receptor antagonizes the pro-inflammatory activity of estrogen in the mouse uterus. Biol Reprod 1999;60:1158–65.

    Article  CAS  PubMed  Google Scholar 

  33. Mesiano S. Myometrial progesterone responsiveness and the control of human parturition. J Soc Gynecol Investig 2004;11:193–202.

    Article  CAS  PubMed  Google Scholar 

  34. Frydman R, Lelaidier C, Baton-Saint-Mleux C, Fernandez H, Vial M, Bourget P. Labor induction in women at term with mifepristone (RU 486): A double-blind, randomized, placebo-controlled study. Obstet Gynecol 1992;80:972–5.

    CAS  PubMed  Google Scholar 

  35. Hirsch E, Saotome I, Hirsh D. A model of intrauterine infection and preterm delivery in mice. Am J Obstet Gynecol 1995;172:1598–603.

    Article  CAS  PubMed  Google Scholar 

  36. Mussalli GM, Blanchard R, Brunnert SR, Hirsch E. Inflammatory cytokines in a murine model of infection-induced preterm labor: Cause or effect? J Soc Gynecol Investig 1999;6:188–95.

    Article  CAS  PubMed  Google Scholar 

  37. Reznikov LL, Fantuzzi G, Selzman CH, et al. Utilization of endoscopic inoculation in a mouse model of intrauterine infection-induced preterm birth: role of interleukin 1beta. Biol Reprod 1999;60:1231–8.

    Article  CAS  PubMed  Google Scholar 

  38. Mussalli GM, Brunnert SR, Hirsch E. Preterm delivery in mice with renal abscess. Obstet Gynecol 2000;95:453–6.

    CAS  PubMed  Google Scholar 

  39. Han YW, Redline RW, Li M, Yin L, Hill GB, McCormick TS. Fusobacterium nucleatum induces premature and term still-births in pregnant mice: Implication of oral bacteria in preterm birth. Infect Immun 2004;72:2272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kajikawa S, Kaga N, Futamura Y, Kakinuma C, Shibutani Y. Lipoteichoic acid induces preterm delivery in mice. J Pharmacol Toxicol Methods 1998;39:147–54.

    Article  CAS  PubMed  Google Scholar 

  41. Dudley DJ, Chen CL, Branch DW, Hammond E, Mitchell MD. A murine model of preterm labor: Inflammatory mediators regulate the production of prostaglandin E2 and interleukin-6 by murine decidua. Biol Reprod 1993;48:33–9.

    Article  CAS  PubMed  Google Scholar 

  42. Fidel PL, Jr., Romero R, Wolf N, et al. Systemic and local cytokine profiles in endotoxin-induced preterm parturition in mice. Am J Obstet Gynecol 1994;170:1467–75.

    Article  CAS  PubMed  Google Scholar 

  43. Kaga N, Katsuki Y, Obata M, Shibutani Y. Repeated administration of low-dose lipopolysaccharide induces preterm delivery in mice: a model for human preterm parturition and for assessment of the therapeutic ability of drugs against preterm delivery. Am J Obstet Gynecol 1996;174:754–9.

    Article  CAS  PubMed  Google Scholar 

  44. Nakanishi Y, Akutsu-hosomura M, Narahara H, Iwasa F. A model for local infection-induced preterm labor in the mouse: Delivery of live pups before term following the intracervical administration of lipopolysaccharide. Prenat Neonat Med 2001;6:116–21.

    Google Scholar 

  45. Elovitz MA, Wang Z, Chien EK, Rychlik DF, Phillippe M. A new model for inflammation-induced preterm birth: The role of platelet-activating factor and toll-like receptor-4. Am J Pathol 2003;163:2103–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Romero R, Mazor M, Tartakovsky B. Systemic administration of interleukin-1 induces preterm parturition in mice. Am J Obstet Gynecol 1991;165:969–71.

    Article  CAS  PubMed  Google Scholar 

  47. Kurtzman JT, Spinnato JA, Goldsmith LJ, et al. Human chorionic gonadotropin exhibits potent inhibition of preterm delivery in a small animal model. Am J Obstet Gynecol 1999;181:853–7.

    Article  CAS  PubMed  Google Scholar 

  48. Dudley DJ, Branch DW, Edwin SS, Mitchell MD. Induction of preterm birth in mice by RU486. Biol Reprod 1996;55:992–5.

    Article  CAS  PubMed  Google Scholar 

  49. Tiboni GM, Giampietro F. Inhibition of nitric oxide synthesis causes preterm delivery in the mouse. Hum Reprod 2000;15:1838–42.

    Article  CAS  PubMed  Google Scholar 

  50. Tiboni GM, Giampietro F, Lamonaca D. The soluble guanylate cyclase inhibitor methylene blue evokes preterm delivery and fetal growth restriction in a mouse model. In Vivo 2001;15:333–7.

    CAS  PubMed  Google Scholar 

  51. Fidel PI Jr, Romero R, Maymon E, Hertelendy F. Bacteria-induced or bacterial product-induced preterm parturition in mice and rabbits is preceded by a significant fall in serum progesterone concentrations. J Matern Fetal Med 1998;7:222–6.

    CAS  PubMed  Google Scholar 

  52. Hirsch E, Muhle R. Intrauterine bacterial inoculation induces labor in the mouse by mechanisms other than progesterone withdrawal. Biol Reprod 2002;67:1337–41.

    Article  CAS  PubMed  Google Scholar 

  53. Dinarello CA. Proinflammatory cytokines. Chest 2000; 118:503–8.

    Article  CAS  PubMed  Google Scholar 

  54. Aggarwal BB. Signalling pathways of the TNF superfamily: A double-edged sword. Nat Rev Immunol 2003;3:745–56.

    Article  CAS  PubMed  Google Scholar 

  55. Romero R, Mazor M, Brandt F, et al. Interleukin-1 alpha and interleukin-1 beta in preterm and term human parturition. Am J Reprod Immunol 1992;27:117–23.

    Article  CAS  PubMed  Google Scholar 

  56. Romero R, Mazor M, Sepulveda W, Avila C, Copeland D, Williams J. Tumor necrosis factor in preterm and term labor. Am J Obstet Gynecol 1992;166:1576–87.

    Article  CAS  PubMed  Google Scholar 

  57. Dudley DJ, Collmer D, Mitchell MD, Trautman MS. Inflammatory cytokine mRNA in human gestational tissues: Implications for term and preterm labor. J Soc Gynecol Investig 1996;3:328–35.

    Article  CAS  PubMed  Google Scholar 

  58. McDuffie RS Jr, Sherman MP, Gibbs RS. Amniotic fluid tumor necrosis factor-alpha and interleukin-1 in a rabbit model of bacterially induced preterm pregnancy loss. Am J Obstet Gynecol 1992;167:1583–8.

    Article  CAS  PubMed  Google Scholar 

  59. Gravett MG, Witkin SS, Haluska GJ, Edwards JL, Cook MJ, Novy MJ. An experimental model for intraamniotic infection and preterm labor in rhesus monkeys. Am J Obstet Gynecol 1994;171:1660–7.

    Article  CAS  PubMed  Google Scholar 

  60. Hirsch E, Blanchard R, Mehta SP. Differential fetal and maternal contributions to the cytokine milieu in a murine model of infection-induced preterm birth. Am J Obstet Gynecol 1999;180:429–34.

    Article  CAS  PubMed  Google Scholar 

  61. Bry K, Hallman M. Transforming growth factor-beta 2 prevents preterm delivery induced by interleukin-1 alpha and tumor necrosis factor-alpha in the rabbit. Am J Obstet Gynecol 1993;168:1318–22.

    Article  CAS  PubMed  Google Scholar 

  62. Baggia S, Gravett MG, Witkin SS, Haluska GJ, Novy MJ. Interleukin-1 beta intra-amniotic infusion induces tumor necrosis factor-alpha, prostaglandin production, and preterm contractions in pregnant rhesus monkeys. J Soc Gynecol Investig 1996;3:121–6.

    Article  CAS  PubMed  Google Scholar 

  63. Brown NL, Alvi SA, Elder MG, Bennett PR, Sullivan MH. Interleukin-1 beta and bacterial endotoxin change the metabolism of prostaglandins E2 and F2alpha in intact term fetal membranes. Placenta 1998;19:625–30.

    Article  CAS  PubMed  Google Scholar 

  64. Challis JRG. Mechanism of parturition and preterm labor. Obstet Gynecol Surv 2000;55:650–60.

    Article  PubMed  Google Scholar 

  65. Rodts-Palenik S, Barrilleaux P, Thigpen B, et al. Intravenous interleukin-10/antibioic therapy prolongs gestation, improves birthweight, and reduces fetal wastage in E. coli-mediated preterm labor. Am J Obstet Gynecol 2003;187:S65.

    Google Scholar 

  66. Maeda K, Matsuzaki N, Fuke S, et al. Value of the maternal interleukin 6 level for determination of histologic chorioamnionitis in preterm delivery. Gynecol Obstet Invest 1997;43:225–31.

    Article  CAS  PubMed  Google Scholar 

  67. Labow M, Shuster D, Zetterstrom M, et al. Absence of IL-1 signaling and reduced inflammatory response in IL-1 type I receptor-deficient mice. J Immunol 1997;159:2452–61.

    CAS  PubMed  Google Scholar 

  68. Acton RD, Dahlberg PS, Uknis ME, et al. Differential sensitivity to Escherichia coli infection in mice lacking tumor necrosis factor p55 or interleukin-1 p80 receptors. Arch Surg 1996;131:1216–21.

    Article  CAS  PubMed  Google Scholar 

  69. Fidel PL Jr, Romero R, Outright J, et al. Treatment with the interleukin-I receptor antagonist and soluble tumor necrosis factor receptor Fc fusion protein does not prevent endotoxin-induced preterm parturition in mice. J Soc Gynecol Investig 1997;4:22–6.

    Article  CAS  PubMed  Google Scholar 

  70. Yoshimura K, Hirsch E. Interleukin-6 is neither necessary nor sufficient for preterm labor in a murine infection model. J Soc Gynecol Investig 2003;10:423–7.

    Article  CAS  PubMed  Google Scholar 

  71. Takeuchi O, Hoshino K, Kawai T, et al. Differential roles of TLK2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 1999;11:443–51.

    Article  CAS  PubMed  Google Scholar 

  72. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA. Recognition of double-stranded RNA and activation of NF-kappaB by toll-like receptor 3. Nature 2001;413:732–8.

    Article  CAS  PubMed  Google Scholar 

  73. Poltorak A, He X, Smirnova I, et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998;282:2085–8.

    Article  CAS  PubMed  Google Scholar 

  74. Qureshi ST, Lariviere L, Leveque G, et al. Endotoxin-tolerant mice have mutations in toll-like receptor 4 (Tlr4). J Exp Med 1999;189:615–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Hayashi F, Smith KD, Ozinsky A, et al. The innate immune response to bacterial flagellin is mediated by toll-like receptor 5. Nature 2001;410:1099–103.

    Article  CAS  PubMed  Google Scholar 

  76. Hernmi H, Takeuchi O, Kawai T, et al. A toll-like receptor recognizes bacterial DNA. Nature 2000;408:740–5.

    Article  CAS  Google Scholar 

  77. Akira S, Takeda K. Toll-like receptor signalling. Nat Rev Immunol 2004;4:499–511.

    Article  CAS  PubMed  Google Scholar 

  78. Takeda K, Akira S. TLR signaling pathways. Semin Immunol 2004;16:3–9.

    Article  CAS  PubMed  Google Scholar 

  79. Lappas M, Permezel M, Georgiou HM, Rice GE. Nuclear factor kappa B regulation of proinflammatory cytokines in human gestational tissues in vitro. Biol Reprod 2002;67:668–73.

    Article  CAS  PubMed  Google Scholar 

  80. Belt AR, Baldassare JJ, Molnar M, Romero R, Hertelendy F. The nuclear transcription factor NF-kappaB mediates interleukin-1 beta-induced expression of cyclooxygenase-2 in human myometrial cells. Am J Obstet Gynecol 1999;181:359–66.

    Article  CAS  PubMed  Google Scholar 

  81. Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1:135–45.

    Article  CAS  PubMed  Google Scholar 

  82. Akira S, Takeda K, Kaisho T. Toll-like receptors: Critical proteins linking innate and acquired immunity. Nat Immunol 2001;2:675–80.

    Article  CAS  PubMed  Google Scholar 

  83. Wang H, Hirsch E. Bacterially-induced preterm labor and regulation of prostaglandin-metabolizing enzyme expression in mice: The role of toll-like receptor 4. Biol Reprod 2003;69:1957–63.

    Article  CAS  PubMed  Google Scholar 

  84. Koscica KL, Sylvestre G, Reznik SE. The effect of phosphoramidon on inflammation-mediated preterm delivery in a mouse model. Am J Obstet Gynecol 2004;190:528–31.

    Article  CAS  PubMed  Google Scholar 

  85. Elovitz M, Wang Z. Medroxyprogesterone acetate, but not progesterone, protects against inflammation-induced parturition and intrauterine fetal demise. Am J Obstet Gynecol 2004;190:693–701.

    Article  CAS  PubMed  Google Scholar 

  86. Loftin CD, Trivedi DB, Langenbach R. Cyclooxygenase-1-selective inhibition prolongs gestation in mice without adverse effects on the ductus arteriosus. J Clin Invest 2002;110:549–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Gross G, Imamura T, Vogt SK, et al. Inhibition of cyclooxygenase-2 prevents inflammation-mediated preterm labor in the mouse. Am J Physiol Regul Integr Comp Physiol 2000;278:R1415–23.

    Article  CAS  PubMed  Google Scholar 

  88. Sakai M, Tanebe K, Sasaki Y, Momma K, Yoneda S, Saito S. Evaluation of the tocolytic effect of a selective cyclooxygenase-2 inhibitor in a mouse model of lipopolysaccharide-induced preterm delivery. Mol Hum Reprod 2001;7:595–602.

    Article  CAS  PubMed  Google Scholar 

  89. Lee PR, Kim SR, Jung BK, et al. Therapeutic effect of cyclo-oxygenase inhibitors with different isoform selectivity in lipopolysaccharide-induced preterm birth in mice. Am J Obstet Gynecol 2003;189:261–6.

    Article  CAS  PubMed  Google Scholar 

  90. Schwartz WJ 3rd, Christensen HD, Carey JC, Rayburn WF, Gonzalez C. Systemic administration of betamethasone delays endotoxin-induced preterm labor in the murine model. Am J Obstet Gynecol 2003;188:439–43.

    Article  CAS  PubMed  Google Scholar 

  91. Peri KG, Quiniou C, Hou X, et al. THG113: A novel selective FP antagonist that delays preterm labor. Semin Perinatol 2002;26:389–97.

    Article  PubMed  Google Scholar 

  92. Mijovic JE, Zakar T, Zaragoza DB, Olson DM. Tyrphostins inhibit lipopolysaccharide induced preterm labor in mice. J Perinat Med 2002;30:297–300.

    Article  CAS  PubMed  Google Scholar 

  93. Mitsuhashi Y, Otsuki K, Yoda A, Shimizu Y, Saito H, Yanaihara T. Effect of lactoferrin on lipopolysaccharide (LPS) induced preterm delivery in mice. Acta Obstet Gynecol Scand 2000;79:355–8.

    Article  CAS  PubMed  Google Scholar 

  94. Futamura Y, Kajikawa S, Kaga N, Shibutani Y. Protection against preterm delivery in mice by urinary trypsin inhibitor. Obstet Gynecol 1999;93:100–8.

    CAS  PubMed  Google Scholar 

  95. Gravett M, Sadowsky D, Witkin S, Novy M. Immunomodu-lators plus antibiotics to prevent preterm delivery in experimental intra-amniotic infection (IAI). Am J Obstet Gynecol 2003;189:S56.

    Article  Google Scholar 

  96. Muhle RA, Pavlidis P, Grundy WN, Hirsch E. A high-throughput study of gene expression in preterm labor with a subtractive microarray approach. Am J Obstet Gynecol 2001;185:716–24.

    Article  CAS  PubMed  Google Scholar 

  97. Wang H, Pavlidis P, Noble WS, Hirsch E. Analysis of gene expression in myometrium during heat-killed E. coli-induced preterm labor in mice. J Soc Gynecol Investig 2003;10(suppl):379A.

    Google Scholar 

  98. Hirsch E, Wang H, Pavlidis P, Noble WS. Gene expression in bacterially induced preterm labor: The lipopolysaccharide (LPS) receptor takes a toll. J Soc Gynecol Investig 2003; 10 (Suppl):379A.

    Google Scholar 

  99. Aguan K, Carvajal JA, Thompson LP, Weiner CP. Application of a functional genomics approach to identify differentially expressed genes in human myometrium during pregnancy and labour. Mol Hum Reprod 2000;6:1141–5.

    Article  CAS  PubMed  Google Scholar 

  100. Marvin KW, Keelan JA, Eykholt RL, Sato TA, Mitchell MD. Use of cDNA arrays to generate differential expression profiles for inflammatory genes in human gestational membranes delivered at term and preterm. Mol Hum Reprod 2002;8:399–408.

    Article  CAS  PubMed  Google Scholar 

  101. Girotti M, Zingg HH. Gene expression profiling of rat uterus at different stages of parturition. Endocrinology 2003;144:2254–65.

    Article  CAS  PubMed  Google Scholar 

  102. Bethin KE, Nagai Y, Sladek R, et al. Microarray analysis of uterine gene expression in mouse and human pregnancy. Mol Endocrinol 2003;17:1454–69.

    Article  CAS  PubMed  Google Scholar 

  103. Ishiwata H, Katsuma S, Kizaki K, et al. Characterization of gene expression profiles in early bovine pregnancy using a custom cDNA microarray. Mol Reprod Dev 2003;65:9–18.

    Article  CAS  PubMed  Google Scholar 

  104. Gravett MG, Novy MJ, Rosenfeld RG, et al. Diagnosis of intra-amniotic infection by proteomic profiling and identification of novel biomarkers. JAMA 2004;292:462–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmet Hirsch MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hirsch, E., Wang, H. The Molecular Pathophysiology of Bacterially Induced Preterm Labor: Insights From the Murine Model. Reprod. Sci. 12, 145–155 (2005). https://doi.org/10.1016/j.jsgi.2005.01.007

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2005.01.007

Key words

Navigation