Skip to main content

Advertisement

Log in

Matrix Metalloproteinase Release From Placental Explants of Pregnancies Complicated by Intrauterine Growth Restriction

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

There is evidence of impaired placental development in intrauterine growth restriction (IUGR). Matrix metalloproteinases (MMPs) are extracellular matrix-degrading enzymes that are released by placental cells during tissue remodeling processes. We hypothesized 1) that release of MMP-2 and -9 is decreased and/or release of tissue inhibitors of metalloproteinases (TIMPs) is increased from placental expiants in pregnancies complicated by IUGR and 2) that oxygen levels affect such release.

Methods

Placental villous expiants from normal (n = 7) and IUGR (n = 7) pregnancies were cultured at high (20%) and low (3%) oxygen levels for 24 hours. Supernatants were analyzed for MMP-2 and MMP-9 by zymography and for TIMP-1 and -2 by western blot analysis.

Results

At 20% oxygen there was significantly reduced MMP-2 (P <.05) and TIMP-1 (P <.01) release and a trend for decreased MMP-9 release (P =.07) in expiants from IUGR pregnancies compared with normal pregnancies; however, there were no differences at 3% oxygen. TIMP-2 was below detectable levels in all samples. Although MMP-2 and TIMP-1 release was significantly reduced at 3% compared with 20% oxygen in expiants from both normal (P <.001; P <.05) and IUGR (P <.05) pregnancies, MMP-2 release changed less in IUGR compared with normal expiant cultures. There were no significant effects of oxygen on MMP-9 release.

Conclusion

Placental expiants from IUGR pregnancies demonstrated reduced MMP-2, MMP-9, and TIMP-1 release compared with expiants from normal pregnancies at high (20%) but not low (3%) oxygen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobson PC, Abell DA, Beischer NA. Mortality and morbidity of fetal growth retardation. Aust N Z J Obstet Gynaecol 1981;21(2):69–72.

    Article  CAS  PubMed  Google Scholar 

  2. Villar J, Belizan JM, Spalding J, Klein RE. Postnatal growth of intrauterine growth retarded infants. Early Hum Dev 1982;6(3):265–71.

    Article  CAS  PubMed  Google Scholar 

  3. Barker DJ. Intrauterine programming of adult disease. Mol Med Today 1995;1(9):418–23.

    Article  CAS  PubMed  Google Scholar 

  4. Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ 1990;301(6746):259–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Barker DJ, Winter PD, Osmond C, Margetts B, Simmonds SJ. Weight in infancy and death from ischaemic heart disease. Lancet 1989;2(8663):577–80.

    Article  CAS  PubMed  Google Scholar 

  6. Heinonen S, Taipale P, Saarikoski S. Weights of placentae from small-for-gestational age infants revisited. Placenta 2001;22(5):399–404.

    Article  CAS  PubMed  Google Scholar 

  7. Kinare AS, Natekar AS, Chinchwadkar MC, et al. Low midpregnancy placental volume in rural Indian women: A cause for low birth weight? Am J Obstet Gynecol 2000;182(2):443–8.

    Article  CAS  PubMed  Google Scholar 

  8. Baker PN, Johnson IR, Gowland PA, et al. Measurement of fetal liver, brain and placental volumes with echo-planar magnetic resonance imaging. Br J Obstet Gynaecol 1995;102(1):35–9.

    Article  CAS  PubMed  Google Scholar 

  9. Pardi G, Marconi AM, Cetin I. Placental-fetal interrelationship in IUGR fetuses—a review. Placenta 2002;23(Suppl A):S136–41.

    Article  PubMed  Google Scholar 

  10. Smith SC, Baker PN, Symonds EM. Increased placental apoptosis in intrauterine growth restriction. Am J Obstet Gynecol 1997;177(6):1395–401.

    Article  CAS  PubMed  Google Scholar 

  11. Niu R, Okamoto T, Iwase K, Nomura S, Mizutani S. Quantitative analysis of matrix metalloproteinases-2 and -9, and their tissue inhibitors-1 and -2 in human placenta throughout gestation. Life Sci 2000;66(12):1127–37.

    Article  CAS  PubMed  Google Scholar 

  12. Riley SC, Webb CJ, Leask R, McCaig FM, Howe DC. Involvement of matrix metalloproteinases 2 and 9, tissue inhibitor of metalloproteinases and apoptosis in tissue remodelling in the sheep placenta. J Reprod Fertil 2000;118(1):19–27.

    Article  CAS  PubMed  Google Scholar 

  13. Birkedal-Hansen H, Moore WG, Bodden MK, et al. Matrix metalloproteinases: A review. Crit Rev Oral Biol Med 1993;4(2):197–250.

    Article  CAS  PubMed  Google Scholar 

  14. Moll UM, Lane BL. Proteolytic activity of first trimester human placenta: Localization of interstitial collagenase in villous and extravillous trophoblast. Histochemistry 1990;94(5):555–60.

    Article  CAS  PubMed  Google Scholar 

  15. Murphy G, Willenbrock F, Crabbe T, et al. Regulation of matrix metalloproteinase activity. Ann N Y Acad Sci 1994;732:31–41.

    Article  CAS  PubMed  Google Scholar 

  16. Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE. Multiple modes of activation of latent human fibroblast collagenase: Evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci U S A 1990;87(1):364–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lamoreaux WJ, Fitzgerald ME, Reiner A, Hasty KA, Charles ST. Vascular endothelial growth factor increases release of gelatinase A and decreases release of tissue inhibitor of metalloproteinases by microvascular endothelial cells in vitro. Microvasc Res 1998;55(1):29–42.

    Article  CAS  PubMed  Google Scholar 

  18. Robinson J, Owens J. Pathophysiology of intrauterine growth failure. In: Gluckman PD, Heymann MA, eds. Pediatrics and perinatology: The scientific basis. London: Arnold Press, 1996:290–7.

    Google Scholar 

  19. Kingdom JC, Kaufmann P. Oxygen and placental villous development: Origins of fetal hypoxia. Placenta 1997;18(8):613–621.

    Article  CAS  PubMed  Google Scholar 

  20. Pardi G, Cetin I, Marconi AM, et al. Venous drainage of the human uterus: Respiratory gas studies in normal and fetal growth-retarded pregnancies. Am J Obstet Gynecol 1992;166(2):699–706.

    Article  CAS  PubMed  Google Scholar 

  21. Sibley CP, Pardi G, Cetin I, et al. Pathogenesis of intrauterine growth restriction (IUGR)—conclusions derived from a European Union Biomed 2 Concerted Action project ‘Importance of Oxygen Supply in Intrauterine Growth Restricted Pregnancies’—a workshop report. Placenta 2002;23(Suppl A):S75–9.

    Article  PubMed  Google Scholar 

  22. Doherty CB, Lewis RM, Sharkey A, Burton GJ. Placental composition and surface area but not vascularization are altered by maternal protein restriction in the rat. Placenta 2003;24(1):34–8.

    Article  PubMed  CAS  Google Scholar 

  23. Siman CM, Sibley CP, Jones CJ, Turner MA, Greenwood SL. The functional regeneration of syncytiotrophoblast in cultured expiants of term placenta. Am J Physiol Regul Integr Comp Physiol 2001;280(4):R1116–22.

    Article  CAS  PubMed  Google Scholar 

  24. Wilcox MA, Johnson IR, Maynard PV, Smith SJ, Chilvers CE. The individualised birth weight ratio: A more logical outcome measure of pregnancy than birthweight alone. Br J Obstet Gynaecol 1993;100(4):342–7.

    Article  CAS  PubMed  Google Scholar 

  25. Kingdom JC, Baker PN. Intrauterine growth restriction. London: Springer-Verlag, Ltd, 2000.

    Book  Google Scholar 

  26. Smith SC, Price E, Hewitt MJ, Symonds EM, Baker PN. Cellular proliferation in the placenta in normal human pregnancy and pregnancy complicated by intrauterine growth restriction. J Soc Gynecol Investig 1998;5(6):317–23.

    Article  CAS  PubMed  Google Scholar 

  27. Benirschke K, Kaufmann P. Pathology of the human placenta. 4th ed. New York: Springer-Verlag, Inc., 2000.

    Book  Google Scholar 

  28. Heussen C, Dowdle EB. Electrophoretic analysis of plasminogen activators in Polyacrylamide gels containing sodium dodecyl sulfate and copolymerized substrates. Anal Biochem 1980;102(1):196–202.

    Article  CAS  PubMed  Google Scholar 

  29. Granelli-Piperno A, Reich E. A study of proteases and protease-inhibitor complexes in biological fluids. J Exp Med 1978;148(1):223–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hawkes SP, Li H, Taniguchi GT. Zymography and reverse zymography for detecting MMPs, and TIMPs. Methods Mol Biol 2001;151:399–410.

    CAS  PubMed  Google Scholar 

  31. Kleiner DE, Stetler-Stevenson WG. Quantitative zymography: Detection of picogram quantities of gelatinases. Anal Biochem 1994;218(2):325–9.

    Article  CAS  PubMed  Google Scholar 

  32. Okamoto T, Akaike T, Sawa T, Miyamoto Y, van der Vliet A, Maeda H. Activation of matrix metalloproteinases by peroxynitrite-induced protein S-glutathiolation via disulfide S-oxide formation. J Biol Chem 2001;276(31):29596–602.

    Article  CAS  PubMed  Google Scholar 

  33. Maeda H, Okamoto T, Akaike T. Human matrix metalloprotease activation by insults of bacterial infection involving proteases and free radicals. Biol Chem 1998;379(2):193–200.

    Article  CAS  PubMed  Google Scholar 

  34. Owens MW, Milligan SA, Jourd’heuil D, Grisham MB. Effects of reactive metabolites of oxygen and nitrogen on gelatinase A activity. Am J Physiol 1997;273(2 Pt 1):L445–50.

    CAS  PubMed  Google Scholar 

  35. Overall CM, Wrana JL, Sodek J. Independent regulation of collagenase, 72-kDa progelatinase, and metalloendoproteinase inhibitor expression in human fibroblasts by transforming growth factor-beta. J Biol Chem 1989;264(3):1860–9.

    CAS  PubMed  Google Scholar 

  36. Maquoi E, Frankenne F, Noel A, Krell HW, Grams F, Foidart JM. Type IV collagen induces matrix metalloproteinase 2 activation in HT1080 fibrosarcoma cells. Exp Cell Res 2000;261(2):348–59.

    Article  CAS  PubMed  Google Scholar 

  37. Yoon SO, Kim MM, Chung AS. Inhibitory effect of selenite on invasion of HT1080 tumor cells. J Biol Chem 2001;276(23):20085–92.

    Article  CAS  PubMed  Google Scholar 

  38. Khaliq A, Dunk C, Jiang J, et al. Hypoxia down-regulates placenta growth factor, whereas fetal growth restriction up-regulates placenta growth factor expression: Molecular evidence for “placental hyperoxia” in intrauterine growth restriction. Lab Invest 1999;79(2):151–70.

    CAS  PubMed  Google Scholar 

  39. Krebs C, Macara LM, Leiser R, Bowman AW, Greer IA, Kingdom JC. Intrauterine growth restriction with absent end-diastolic flow velocity in the umbilical artery is associated with maldevelopment of the placental terminal villous tree. Am J Obstet Gynecol 1996;175(6):1534–42.

    Article  CAS  PubMed  Google Scholar 

  40. Macara L, Kingdom JC, Kaufmann P, et al. Structural analysis of placental terminal villi from growth-restricted pregnancies with abnormal umbilical artery Doppler waveforms. Placenta 1996;17(1):37–48.

    Article  CAS  PubMed  Google Scholar 

  41. Salafia CM, Pezzullo JC, Minior VK, Divon MY. Placental pathology of absent and reversed end-diastolic flow in growth-restricted fetuses. Obstet Gynecol 1997;90(5):830–6.

    Article  CAS  PubMed  Google Scholar 

  42. Narumiya H, Zhang Y, Fernandez-Patron C, Guilbert LJ, Davidge ST. Matrix metalloproteinase-2 is elevated in the plasma of women with preeclampsia. Hypertens Pregnancy 2001;20(2):185–94.

    Article  CAS  PubMed  Google Scholar 

  43. Cooper JC, Sharkey AM, Charnock-Jones DS, Palmer CR, Smith SK. VEGF mRNA levels in placentae from pregnancies complicated by pre-eclampsia. Br J Obstet Gynaecol 1996;103(12):1191–6.

    Article  CAS  PubMed  Google Scholar 

  44. Lyall F, Young A, Boswell F, Kingdom JC, Greer IA. Placental expression of vascular endothelial growth factor in placentae from pregnancies complicated by pre-eclampsia and intrauterine growth restriction does not support placental hypoxia at delivery. Placenta 1997;18(4):269–76.

    Article  CAS  PubMed  Google Scholar 

  45. Tse JY, Lao TT, Chan CC, Chiu PM, Cheung AN. Expression of vascular endothelial growth factor in third-trimester placentas is not increased in growth-restricted fetuses. J Soc Gynecol Investig 2001;8(2):77–82.

    Article  CAS  PubMed  Google Scholar 

  46. Crocker IP, Strachan BK, Lash GE, Cooper S, Warren AY, Baker PN. Vascular endothelial growth factor but not placental growth factor promotes trophoblast syncytialization in vitro. J Soc Gynecol Investig 2001;8(6):341–6.

    Article  CAS  PubMed  Google Scholar 

  47. Cheung CY. Vascular endothelial growth factor: Possible role in fetal development and placental function. J Soc Gynecol Investig 1997;4(4):169–77.

    Article  CAS  PubMed  Google Scholar 

  48. Hosford GE, Olson DM. Effects of hyperoxia on VEGF, its receptors, and HIF-2alpha in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol 2003;285(1):L161–8.

    Article  CAS  PubMed  Google Scholar 

  49. Adamis AP, Miller JW, Bernai MT, et al. Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. Am J Ophthalmol 1994;118(4):445–50.

    Article  CAS  PubMed  Google Scholar 

  50. Alon T, Hemo I, Itin A, Pe’er J, Stone J, Keshet E. Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nat Med 1995;1(10):1024–8.

    Article  CAS  PubMed  Google Scholar 

  51. Merchant SJ, Narumiya H, Zhang Y, Guilbert LJ, Davidge ST. The effects of preeclampsia and oxygen environment on endothelial release of matrix metalloproteinase-2. Hypertens Pregnancy 2003. In press.

    Google Scholar 

  52. Polette M, Nawrocki B, Pintiaux A, et al. Expression of gelatinases A and B and their tissue inhibitors by cells of early and term human placenta and gestational endometrium. Lab Invest 1994;71(6):838–46.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

S.J. Merchant is supported by the Province of Alberta Graduate Scholarship from the Faculty of Graduate Studies and Research, University of Alberta. S. T. Davidge is a Canada Research Chair and Senior Scholar of the Alberta Heritage Foundation for Medical Research. I. P. Crocker, P. N. Baker, and D. Tansinda are supported by Tommy’s — The Baby Charity. This research is supported by a grant to S. T. Davidge and L. J. Guilbert from the Canadian Institutes of Health Research (grant MOP42380).

The authors thank the research midwives and support staff at St. Mary’s Hospital, Manchester, United Kingdom for their assistance in the collection of samples

Rights and permissions

Reprints and permissions

About this article

Cite this article

Merchant, S.J., Crocker, I.P., Baker, P.N. et al. Matrix Metalloproteinase Release From Placental Explants of Pregnancies Complicated by Intrauterine Growth Restriction. Reprod. Sci. 11, 97–103 (2004). https://doi.org/10.1016/j.jsgi.2003.08.005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2003.08.005

Key words

Navigation