Skip to main content
Log in

Effects of lnterferon-γ and Tumor Necrosis Factor-α on Survival and Differentiation of Oligodendrocyte Progenitors

  • Original Articles
  • Published:
The Journal of the Society for Gynecologic Investigation: JSGI Aims and scope Submit manuscript

Abstract

Objective

There is strong evidence from recent clinical studies that ascending intrauterine infection is associated with an increased incidence of periventricular leukomalacia in very premature fetuses. Periventricular leukomalacia is characterized by disrupted myelination from a loss of oligodendrocyte progenitors. We investigated the effects of proinflammatory cytokines on the survival and differentiation of this cell type.

Methods

Cultures of more than 90% A2B5-positive progenitors were prepared from neonatal rats and kept for 3 days in medium supplemented with factors that stimulate cell proliferation. After 1 day in proliferation medium, cells were treated with interferon-γ (100 U/mL) and tumor necrosis factor-α (100 ng/mL) for 48 hours triggering an increase in apoptotic A2B5 progenitor cells from 3.2 ± 2.3% to 11.0 ± 2.6%). After cytokine treatment cultures were transferred to medium containing factors to promote differentiation of progenitors into the myelinating phenotype.

Results

In cytokine pretreated cultures, only 2.6 ± 1.1% of total cells survived after a total of 9 days in vitro, whereas in untreated cultures most cells differentiated as shown by expression of myelin basic protein, myelin-associated glycoprotein, 2′,3′ -cyclic nucleotide 3′-phosphodiesterase, and myelin oligodendrocyte-specific protein. Using ten-fold reduced concentrations of combined interferon-γ (10 U/mL) and tumor necrosis factor-α (10 ng/mL) pretreatment resulted in a survival to 11.2 ± 4.9% of total cells with 36.3 ± 11.6% A2B5-positive cells at day 9. This indicates a major enrichment of undifferentiated cells compared with untreated controls which harbored only 1.0 ± 0.3% A2B5-positive cells.

Conclusion

Inflammatory cytokines not only induced apoptotic cell death but also prevented the differentiation of immature A2B5 oligodendrocyte progenitors into the myelinating phenotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berger R, Garnier Y. Pathophysiology of perinatal brain damage. Brain Res Brain Res Rev 1999;30:107–34.

    Article  CAS  PubMed  Google Scholar 

  2. Volpe JJ. Neurology of the newborn. Philadelphia: Saunders, 1995.

    Google Scholar 

  3. Dammann O, Leviton A. Maternal intrauterine infection, cytokines, and brain damage in the preterm infant. Pediatr Res 1997;42:1–8.

    Article  CAS  PubMed  Google Scholar 

  4. Garnier Y, Coumans ABC, Berger R, Jensen A, Hasaart THM. Endotoxemia severely affects circulation during normoxia and asphyxia in immature fetal sheep. J Soc Gynecol Investig 2001;8:134–42.

    Article  CAS  PubMed  Google Scholar 

  5. Back SA, Volpe JJ. Cellular and molecular pathogenesis of periventricular white matter damage. Ment Retard Dev Disabilities 1997;3:96–107.

    Article  Google Scholar 

  6. Cammer W, Zhang H. Maturation of oligodendrocytes is more sensitive to TNFa than is survival of precursors and immature oligodendrocytes. J Neuroimmunol 1999;97:37–42.

    Article  CAS  PubMed  Google Scholar 

  7. Qi Y, DalCanto MC. Effect of Theiler’s murine encephalomyelitis virus and cytokines on cultured oligodendrocytes’ and astrocytes. J Neurosci Res 1996;45:364–74.

    Article  CAS  PubMed  Google Scholar 

  8. Selmaj KW, Raine CS. Tumour necrosis factor mediates myelin and oligodendrocyte damage in vitro. Ann Neurol 1988;23:339–46.

    Article  CAS  PubMed  Google Scholar 

  9. Cammer W. Effects of TNFα on immature and mature oligodendrocytes and their progenitors in vitro. Brain Res 2000;864(2):213–9.

    Article  CAS  PubMed  Google Scholar 

  10. Agresti C, D’Urso D, Levi G. Reversible inhibitory effects of interferon-γ and tumour necrosis factor-α on oligodendroglial lineage cell proliferation and differentiation. Eur J Neurosci 1996;8:1106–16.

    Article  CAS  PubMed  Google Scholar 

  11. Andrews T, Zhang P, Bhat NR. TNFa potentiates IFNgamma-induced cell death in oligodendrocyte progenitors. J Neurosci Res 1998;54:574–83.

    Article  CAS  PubMed  Google Scholar 

  12. McCarthy KD, De Vellis J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J Cell Biol 1980;85:890–902.

    Article  CAS  PubMed  Google Scholar 

  13. Simpson PB, Mehotra S, Lange GD, Russell JT. High density distribution of endoplasmic reticulum proteins and mitochondria at specialized Ca2+ release sites in oligodendrocyte processes. J Biol Chem 1997;272:22654–61.

    Article  CAS  PubMed  Google Scholar 

  14. Raff MC, Miller RH, Noble M. A glial progenitor cell that develops in vitro into an astrocyte or an oligodendrocyte depending on culture medium. Nature 1983;303:390–6.

    Article  CAS  PubMed  Google Scholar 

  15. Back SA, Gan X, Li Y, Rosenberg PA, Volpe JJ. Maturation-dependent vulnerability of oligodendrocytes to oxidative stress-induced death caused by glutathione depletion. J Neurosci 1998;18:6241–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaillant AR, Mazzoni I, Tudan C, Boudreau M, Kaplan DR, Miller FD. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J Cell Biol 1999;146:955–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970;227:680–5.

    Article  CAS  PubMed  Google Scholar 

  18. Aloisi F, Agresti C, D’Urso D, Levi G. Differentiation of bipotential glial precursors into oligodendrocytes is promoted by interaction with type-1 astrocytes in cerebellar cultures. Proc Natl Acad Sci U S A 1988;85:6167–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Armstrong RC, Harvath L, Dubois-Dalcq ME. Type 1 astrocytes and oligodendrocyte-type 2 astrocyte glial progenitors migrate toward distinct molecules. J Neurosci Res 1990;27:400–7.

    Article  CAS  PubMed  Google Scholar 

  20. Noble M, Murray K. Purified astrocytes promote the in vitro division of a bipotential glial progenitor cell. EMBO J 1984;3:2243–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Raff MC, Williams BP, Miller RH. The in vitro differentiation of a bipotential glial progenitor cell. EMBO J 1984;3:1857–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wren D, Wolswijk G, Noble M. In vitro analysis of the origin and maintenance of 0-2A adult progenitor cells. J Cell Biol 1992;116:167–76.

    Article  CAS  PubMed  Google Scholar 

  23. Dubois C, Manuguerra JC, Hauttecoeur B, Maze J. Monoclonal antibody A2B5, which detects cell surface antigens, binds to ganglioside GT3 (113 (NeuAc)3LacCer) and to its 9-O-acetylated derivative. J Biol Chem 1990;265:2797–803.

    CAS  PubMed  Google Scholar 

  24. Fredman P, Magnani JL, Nirenberg M, Ginsburg V. Monoclonal antibody A2B5 reacts with many gangliosides in neuronal tissue. Arch Biochem Biophys 1984;233:661–6.

    Article  CAS  PubMed  Google Scholar 

  25. Bansal R, Warrington AE, Gard AL, Ranscht B, Pfeiffer SE. Multiple and novel specificities of monoclonal antibodies O1, O4, and R-mAb used in the analysis of oligodendrocyte development. J Neurosci Res 1989;24:548–57.

    Article  CAS  PubMed  Google Scholar 

  26. Schachner M, Kim SK, Zehnle R. Developmental expression in central and peripheral nervous system of oligodendrocyte cell surface antigens (O antigens) recognized by monoclonal antibodies. Dev Biol 1981;83:328–38.

    Article  CAS  PubMed  Google Scholar 

  27. Dubois-Dalcq M, Behar T, Hudson L, Lazzarini RA. Emergence of three myelin proteins in oligodendrocytes cultured without neurons. J Cell Biol 1986;102:384–92.

    Article  CAS  PubMed  Google Scholar 

  28. Mirsky R, Winter J, Abney ER, Pruss RM, Gavrilovic J, Raff MC. Myelin-specific proteins and glycolipids in rat Schwann cells and oligodendrocytes in culture. Cell Biol 1980;84:483–94.

    Article  CAS  Google Scholar 

  29. Sprinkle TJ. 2′,3′-Cyclic nucleotide 3′-phosphodiesterase, a oligodendrocyte-Schwann cell and myelin associated enzyme of the nervous system. CRC Crit Rev Neurobiol 1989;4:235–300.

    CAS  Google Scholar 

  30. Vogel US, Thompson RJ. Molecular structure, localization and possible functions of the myelin associated enzyme 2′,3′-cyclic nucleotide phosphodiesterase. J Neurochem 1988;50:1667–77.

    Article  CAS  PubMed  Google Scholar 

  31. Quarles R, Colman D, Salzer J, Trapp B. Myelin-associated glycoprotein: Structure-function relationships and involvement in neurological diseases. In: Martensen R, ed. Myelin: Biology and chemistry. Boca Raton, FL: CRC Press, 1992:4413–48.

    Google Scholar 

  32. Dyer CA, Hickey WF, Geisert EE Jr. Myelin/oligodendrocytespecific protein: A novel surface membrane protein that associates with microtubules. J Neurosci Res 1991;28:607–13.

    Article  CAS  PubMed  Google Scholar 

  33. Mu QQ, Dyer C. Developmental expression of MOSP in cultured oligodendrocytes. Neurochem Res 1994;19:1033–8.

    Article  CAS  PubMed  Google Scholar 

  34. Ruggiero V, Tavernier J, Fiers W, Baglioni C. Induction of the synthesis of tumour necrosis factor receptors by interferongamma. J Immunol 1986;136:2445–50.

    CAS  PubMed  Google Scholar 

  35. Agresti C, Bernardo A, Del Russo N, et al. Synergistic stimulation of MHC class I and IRF-1 gene expression by IFN-77 and TNF-ctct in oligodendrocytes. Eur J Neurosci 1998;10:2975–83.

    Article  CAS  PubMed  Google Scholar 

  36. Suk K, Chang I, Kim YH, et al. Inerferon 7 (IFN7) and tumour necrosis factor α synergism in ME-180 cervical cancer cell apoptosis and necrosis. J Biol Chem 2001;276:13153–9.

    Article  CAS  PubMed  Google Scholar 

  37. Back SA, Han BH, Luo NL, et al. Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia. J Neurosci 2002;22:455–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ye D, D’Ercole AJ. Insulin-like growth factor I protects oligodendrocytes from tumour necrosis factor-α-induced injury. Endocrinology 1999;140:3063–72.

    Article  CAS  PubMed  Google Scholar 

  39. Hopkins SJ, Rothwell NJ. Cytokines and the nervous system. I: Expression and recognition. Trends Neurosci 1995;18:83–8.

    CAS  PubMed  Google Scholar 

  40. Rothwell NJ, Relton JK. Involvement of cytokines in acute neurodegeneration in the CNS. Neurosci Biobehav Rev 1993;17:217–27.

    Article  CAS  PubMed  Google Scholar 

  41. Schneider-Schaulies J, Kirchhoff F, Archelos J, Schachner M. Down-regulation of myelin-associated glycoprotein in Schwann cells by interferon-γ and tumor necrosis factor-α affects neunte outgrowth. Neuron 1991;7:995–1005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Berger MD, PhD.

Additional information

This work was supported by Deutsche Forschungsgemeinschaft (Be 1688/4-3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feldhaus, B., Dietzel, I.D., Heumann, R. et al. Effects of lnterferon-γ and Tumor Necrosis Factor-α on Survival and Differentiation of Oligodendrocyte Progenitors. Reprod. Sci. 11, 89–96 (2004). https://doi.org/10.1016/j.jsgi.2003.08.004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1016/j.jsgi.2003.08.004

Key words

Navigation