## Abstract

Let {*X*, *X*_{n}, *n* ≥ 1} be a sequence of independent identically distributed (i.i.d.) random variables defined on a probability space (*Ω, F*, ℙ) with common distribution *F*, and let {*X*^{*}_{n,1}…,*X*^{*}_{n,n}} be a bootstrap sample from the empirical distribution *F*_{n}. Based on the bootstrap sample, the moderate deviation,Jarge deviation and Bahadur’s asymptotic efficiency of the bootstrap sample pth quantile ξ̂^{*}_{np} are established.

### Similar content being viewed by others

## References

Ahmed, S. E., Li, D. L., Rosalsky, A. & Volodin, A. I. (2001). Almost sure lim sup behavior of bootstrapped means with applications to pairwise i.i.d. sequences and stationary ergodic sequences

*Journal of Statistical Planning and Inference*,*98*(1-2), 1–14.Arenal-Gutiérrez, E., Matran, C. & Cuesta-Albertos, J. A. (1996). On the unconditional strong law of large numbers for the bootstrap mean.

*Statistics & Probability Letters*,*27*(1), 49–60.Athreya, K. B. (1983). Strong law forthe bootstrap.

*Statistics & Probability Letters*,*1*(3), 147–150.Athreya, K. B., Ghosh, M. Low, L. Y., & Sen, P. K. (1984). Laws of large numbers for bootstrapped

*U*-statistics.*Journal of Statistical Planning and Inference*,*9*(2), 185–194.Bahadur, R. R. (1966). A note on quantiles in large samples.

*Annals of Mathematics Statistics*,*37*, 577–580.Bickel, P. J., & Freedman, D. A. (1981). Some asymptotic theory forthe bootstrap.

*The Annals of Statistics*,*9*(6), 1196–1217.Csörgö, S. (1992). On the law of large numbers forthe bootstrap mean.

*Statistics & Probability Letters*,*14*(1), 1–7.Eforn, B. (1979). Bootstrap methods: Another look at the jackknife.

*The Annals of Statistics*,*7*(1), 1–26.Giné, E., & Zinn, J. (1989). Necessary conditions for the bootstrap of the me An.

*The Annals of Statistics*,*17*(2), 684–691.Hall, P. (1988). Rate of convergence in bootstrap approximations.

*The Annals of Probability*,*16*(4), 1665–1684.Lahiri, S. N., & Sun, S. (2009). A Berry-Esseen theorem for sample quantiles under weak dependence.

*The Annals of Applied Probability*,*19*(1), 108–126.Li, D., Rosalsky, A. & Al-Mutairi, D. K. (2002). A large deviation principle for bootstrapped sample means.

*Proceedings of the Americal Mathematical Society*,*130*(7), 2133–2138.Kiefer, J. (1967). On Bahadur’s representation of sample quantiles.

*Annals of Mathematics Statistics*,*38*, 1323–1342.Miao, Y., Chen, Y. X., & Xu, S. F. (2011). Asymptotic properties of the deviation between order statistics and

*p*-quantile.*Communications in Statistics. Theory and Methods*,*40*(1), 8–14.Mikosch, T. (1994). Almost sure convergence of bootstrapped means and

*U*-statistics.*Journal of Statistical Planning and Inference*,*41*(1), 1–19.Shao, J., & Chen, Y. Z. (1998). Bootstrapping sample quantiles based on complex survey data under hot deck imputation.

*Statistica Sinica*,*8*(4), 1071–1085.Singh, K. (1981). On the asymptotic accuracy of Efron’s bootstrap.

*The Annals of Statistics*,*9*(6), 1187–1195.Xu, S. F., & Miao, Y. (2011). Limit behaviors of the deviation between the sample quantiles and the quantile.

*Filomat*,*25*(2), 197–206.Zuo, Y. (2015). Bahadur representations for bootstrap quantiles.

*Metrika*,*78*(5), 597–610.

## Author information

### Authors and Affiliations

### Corresponding author

## Additional information

This work is supported by IRTSTHN (14IRTSTHN023), NSFC (11471104).

## Rights and permissions

## About this article

### Cite this article

Miao, Y., Mu, J., Zhao, J. *et al.* Large and moderate deviation principles for the bootstrap sample quantile.
*J. Korean Stat. Soc.* **46**, 573–582 (2017). https://doi.org/10.1016/j.jkss.2017.04.003

Received:

Accepted:

Published:

Issue Date:

DOI: https://doi.org/10.1016/j.jkss.2017.04.003